Конечный продукт обмена выводимый из организма птиц. Откуда берется мочевая кислота? Снижение концентрации мочевины

I. Цель изучения: знать конечные продукты обмена белков в организме, основные источники образования аммиака, пути его обезвреживания из организма.

II. Уметь количественно определять содержание мочевины по цветной реакции с диацетилмонооксимом в сыворотке крови; познакомиться с физико-химическими свойствами мочевины.

III. Исходный уровень знаний: качественные реакции на аммиак (неорганическая химия).

IV. Ответить на вопросы контрольных итоговых билетов по теме: «Распад простых белков. Метаболизм аминокислот, конечные продукты азотистого обмена».

1. Конечными продуктами распада азотсодержащих веществ являются углекислый газ, вода и аммиак, в отличие от углеводов и липидов. Источником аммиака в организме являются аминокислоты, азотистые основания, амины. Аммиак образуется в результате прямого и непрямого дезаминирования аминокислот, (основной источник) гидролитического дезаминирования азотистых оснований, инактивации биогенных аминов.

2. Аммиак токсичен и его действие проявляется в нескольких функциональных системах: а) легко проникая через мембраны (нарушая трансмембранный перенос Na + и К +) в митохондриях связывается с α-кетоглутаратом и другими кетокислотами (ЦТК), образуя аминокислоты; в этих процессах используются и восстановительные эквиваленты (NADH+H +).

б) при высоких концентрациях аммиака глутамат и аспартат образуют амиды, используя и АТФ нарушая все тот же ЦТК, являющийся главным энергетическим источником работы мозга. в) Накопление глутамата в мозге повышает осмотическое давление, что ведет к развитию отека. г) Повышение концентрации аммиака в крови (N – 0.4 – 0.7 мг/л) сдвигает рН в щелочную сторону, повышая сродство О 2 к гемоглобину, что вызывает гипоксию нервной ткани. д) Уменьшение концентрации α-кетоглутарата вызывает угнетение обмена аминокислот (синтеза нейромедиаторов), ускорение синтеза оксалоацетата из пирувата, что связано с повышенным использованием СО 2 .

3. Гипераммониемия прежде всего отрицательно действует на мозг и сопровождается тошнотой, головокружением, потерей сознания, отставанием умственного развития (при хронической форме).

4. Основной реакцией связывания аммиака во всех клетках является синтез глутамина под действием глутаминсинтетазы в митохондриях, где используется для этой цели АТФ. Глутамин облегченной диффузией поступает в кровь и транспортируется в кишечник и почки. В кишечнике под действием глутаминазы образуется глутамат, который трансаминируется с пируватом, превращая его в аланин, поглощаемый печенью; 5% аммиака удаляется через кишечник, остальные 90% выводятся почками.

5. В почках также идет гидролиз глутамина с образованием аммиака под действием глутаминазы, которая активируется ацидозом. В просвете канальцев аммиак нейтрализует кислые продукты обмена образуя аммонийные соли для выведения, одновременно сокращая потери К + и Na + . (N – 0,5г солей аммония в сутки).

6. Высокий уровень глутамина в крови обуславливает его использование во многих анаболических реакциях в качестве донора азота (синтез азотистых оснований и др.)

7. Наиболее значительные количества аммиака обезвреживаются в печени синтезом мочевины (86% азота в моче) в количестве ~25 г/сутки. Биосинтез мочевины – циклический процесс, где ключевым веществом является орнитин, присоединяющий карбомоил, образованный из NH 3 и CO 2 при активации 2АТФ. Образованный цитруллин в митохондриях транспортируется в цитозоль для введения второго атома азота из аспартата с образованием аргинина. Аргинин гидролизуется аргиназой и превращается снова в орнитин, а вторым продуктом гидролиза является мочевина, которая по сути дела в этом цикле образовалась из двух атомов азота (источники –NH 3 и аспартат) и одного атома углерода (из СО 2). Энергией обеспечивают 3АТФ (2-при образовании карбомолфосфата и 1 при образовании аргининосукцината).

8. Орнитиновый цикл тесно связан с ЦТК, т.к. аспартат образуется при трансаминировании ЩУК из ЦТК, а фумарат, оставшийся из аспартата после удаления NH 3 , возвращается в ЦТК и, при превращении его в ЩУК, образуются 3 АТФ, обеспечивающие биосинтез молекулы мочевины.

9. Наследственные нарушения орнитинового цикла (цитруллинемия, аргининосукцинатурия, гипераргининемия) ведут к гиперамминиемии и в тяжелых случаях могут привести к печеночной коме.

10. Норма мочевины в крови 2,5-8,3 ммоль/л. Понижение наблюдается при болезнях печени, повышение – результат почечной недостаточности.

Лабораторная работа

Речь пойдет об особенностях метаболизма пуриновых оснований. Большинству людей это ни о чем не говорит. Но если вам знакомы слова «подагра», мочекаменная болезнь, инсулинорезистентность, сахарный диабет 2 типа, то знать суть о метаболизме пуринов необходимо. Казалось бы: а хирургия то здесь причем? А притом, что многие специалисты при болях в суставах и высокой мочевой кислоте ставят диагноз «подагра». На самом деле — все намного сложнее. К примеру подагрический артрит может быть при нормальных цифрах мочевой кислоты, и наоборот: высокая мочевая кислота может быть в ряде случаев у здорового человека.

Организм человека в основном состоит из четырех химических элементов, на долю которых приходится 89 % состава: С-углерод (50%), О-кислород(20%), Н-водород(10%) и N-азот (8,5%). Далее идет ряд макроэлементов: кальций, фосфор, калий, сера, натрий, хлор и др. Затем микроэлементы, количество которых очень мало, но они жизненно необходимы: марганец, железо, йод и пр.
Интересен нам будет четвертый в этом количественном списке — азот.

Живой организм — это динамическая система. По простому: вещества в него постоянно поступают (становясь частью организма) и выводятся из него. Основной источник азота для организма — белки. Поступающий с пищей белок в желудочно-кишечном тракте распадается до аминокислот, которые уже и включаются в обмен. Ну а каким образом азотсодержащие вещества выводятся из организма?

В процессе эволюции у животных выработались определенные особенности азотистого обмена.
Причем ключевым в определении этих особенностей будут: условия существования и доступ к воде.

Животных разделяют на три группы, имеющие различия в метаболизме азота:

Аммонио-литические . Конечный продукт азотистого обмена — аммиак, NH3. Сюда относят большую часть водных беспозвоночных и рыб.
Все дело в том, что аммиак — токсичное вещество. И для его выведения нужно очень-очень много жидкости. Благо — он хорошо растворим в воде. С выходом на сушу в ходе эволюции возникла потребность в изменении метаболизма. Так появились:

Уреолитические . У этих животных появился так называемый «цикл мочевины». Аммиак связывается с СО2(углекислый газ). Образуется конечный продукт — мочевина. Мочевина не такое токсичное вещество и для ее выведения требуется заметно меньше жидкости. Кстати мы с вами относимся именно к этой группе. Мочевая кислота в процессе метаболизма в значительно меньших количествах также образуется, но распадается до малотоксичного и хорошо растворимого аллантоина. Но… Кроме человека и человекообразных обезьян. Это очень важно и к этому вернемся.

Урикотелические . Предкам земноводных с уреолитическим обменом пришлось приспосабливаться к засушливым регионам. Это пресмыкающиеся и прямые предки динозавров — птицы. У них конечным продуктом является мочевая кислота. Она очень плохо растворяется в воде и для ее выведения из организма как раз воды много и не требуется. В помете у тех же птиц количество мочевой кислоты очень большое, фактически выводится в полутвердом виде Поэтому птичий помет («гуано») — основная причина коррозии и разрушения металлоконструкций мостов. Лакокрасочное покрытие автомобиля тоже портит — будьте внимательны, мойте сразу.
Это классическая гексагональная долька печени. В общем так печень выглядит под микроскопом. Похожа на Москву-сити, только вместо кремля — центральная вена. А интересовать нас будут «домики», плотно прилежащие друг к другу. Это гепатоциты — ключевые клетки печени.
Славянское слово печень произошло от слова «печь». Действительно, температура органа на градус выше температуры тела. Причина в этом — очень активный обмен веществ в гепатоцитах. Клетки действительно уникальные, в них протекает около 2 тысяч химических реакций.
Печень — это основной орган, который продуцирует мочевую кислоту. 95% выводимого азота — синтез мочевой кислоты как конечный продукт химических реакций в печени . И только 5% — окисление пуриновых оснований, поступающих извне с пищей. Поэтому коррекция питания при гиперурикемии не является ключевым в лечении.

Схема обмена мочевой кислоты

Откуда берутся пурины?
1. Пурины, которые поступают с пищей . Как уже отмечалось — это небольшое количество — около 5%. Те пурины, которые содержаться в пище (больше всего, разумеется в печени и почках, красном мясе).
2. Синтез пуриновых оснований самим организмом . Большая часть синтезируется в гепатоцитах печени. Очень важный пункт, к нему вернемся. А также причем здесь рекомендуемая диабетиками и не требующая для усвоения инсулина фруктоза.
3. Пуриновые основания, которые образуются в организме вследствие распада тканей: при онкопроцессах, псориазе . Почему у спортсменов может повышаться мочевая кислота? Это и есть третий путь. Тяжелые физические нагрузки приводят к усилению процессов распада и синтеза тканей. Если вы накануне занимались тяжелым физическим трудом, а утром вы сдаете анализ, уровень мочевой кислоты может быть выше вашего среднего значения.

Знакомимся: аденин и гуанин. Это и есть пуриновые основания. Совместно с тимином и цитозином формируют спираль ДНК. Студенты медики не любят — зубрежка на курсе биохимии:). Как известно, ДНК состоит из двух цепочек. Напротив аденина всегда становится тимин, напротив гуанина — цитозин. Две цепочки ДНК склеиваются как две половинки застежки-молнии. Количество этих веществ повышается при активном распаде тканей, как бывает, например, при онкопроцессах

Рядом последовательных химических реакций пурины преобразуются в мочевую кислоту.

Метаболизм мочевой кислоты у человека и приматов

Планировал максимально упростить для понимания схему. Пусть учат студенты-медики на 2 курсе:). Но названия ферментов оставил. Самый важный момент — фермент ксантиноксидаза . Именно его активность падает при лечении аллопуринолом (точнее эффективность, так как аллопуринол с ним конкурирует за рецептор), чем и снижается синтез мочевой кислоты.
Редко, но всречаются врожденное заболевание,сопровождающееся генетическим нарушением в синтезе ксантиноксидазы, при котором уровень мочевой кислоты снижен. В таком случае накапливаются ксантин и гипоксантин. Ксантинурия. Казалось бы ну и хорошо, меньше мочевой кислоты. Однако выяснилось, что мочевая кислота не только вредна, но и полезна…

Разговор о вреде и пользе мочевой кислоты следует начать очень издалека. Тогда, 17 миллионов лет назад, в эпоху миоцена у наших предков произошла мутация в гене, который продуцирует фермент — уриказу. И нам досталась «урезанная» версия пуринового обмена.

У других млекопитающих уриказа переводит мочевую кислоту в растворимый и легко выводящийся из организма аллантоин. И у этих животных никогда не бывает подагры. Может возникнуть предположение, что в этой мутации нет никакого смысла. Но эволюция этот ген не исключила: мутация оказалась необходимой.

Современные исследования показали, что мочевая кислота является побочным продуктом разложения фруктозы в печени и накопление солей мочевой кислоты способствует эффективному превращению фруктозы в жир. Таким образом, у наших предков в геноме закрепился ген «бережливости». Тогда ген был необходим для создания запасов на голодный период. Было доказано, что окончательная инактивация уриказы совпала с глобальным похолоданием климата на Земле. Нужно было «наесть» как можно больше запасов подкожного жира на холодный период, перевести содержащуюся в плодах фруктозу в жировой запас. Сейчас проводятся ряд экспериментов с введением в клетки печени фермента уриказы. Не исключено, что в дальнейшем на основе фермента уриказы появятся препараты для лечения подагры. Так что склонность к ожирению у нас заложена в генах. На несчастье тем многим мужчинам и женщинам, страдающим полнотой. Но проблема не только в генетике. Изменился характер питания современного человека.

Про вред и пользу мочевой кислоты, а также про питание при гиперурикемии

Известно, что постоянный уровень мочевой кислоты способен значительно повысить риск ряда заболеваний. Однако доказано, что периодическое повышение уровня мочевой кислоты может оказывать положительное действие. Исторически доступ к мясной пище (основному источнику пуринов), был нерегулярным. Основная пища: различные коренья, плоды деревьев. Ну а если принесет первобытный охотник добычу — так это праздник. Поэтому, периодическое от мясных продуктов было обычным образом жизни. Есть добыча — едим до отвала. Нет добычи — едим растительную пищу. Сейчса установлено, что кратковременное, периодическое повышение уровня мочевой кислоты благоприятно вляет на развитие и функцию нервной системы. Может поэтому и начал развиваться мозг?

Как эта мочевая кислота выводится из организма

Пути два: почки и печень
Основной путь — выведение с почками — это 75%
25 процентов выводится печенью с помощью желчи. Поступившая в просвет кишечника мочевая кислота и разрушается (спасибо нашим бактериям в кишечнике).
В почки мочевая кислота попадает в виде натриевой соли. При ацидозе (закислении мочи) в почечных лоханках могут формироваться микролиты. Тот самый «песок» и «камни». Кстати алкоголь очень сильно снижает экскрецию уратов с мочой. Почему и приводит к приступу подагры.

Итак, какой нужно сделать вывод?Методы снижения мочевой кислоты

1. Стараться в неделю 1-2 дня делать чисто вегетарианским
2. Наибольшее количество пуринов содержится в тканях животного происхождения. Причем в животных клетках с активным метаболизмом: печени, почках — больше всего.
3. Нужно есть меньше жирной пищи, так как избыток насыщенных жиров подавляет способность организма перерабатывать мочевую кислоту.
4. Едим поменьше фруктозы. Мочевая кислота — продукт метаболизма фруктозы. Ранее пациентам с сахарным диабетом рекомендовали заменять глюкозу на фруктозу. Действительно, фруктоза для своего усвоения не требует участия инсулина. Но для усвоения фруктоза еще тяжелее. Внимание: в сахаре молекула сахарозы — это дисахарид — глюкоза + фруктоза. Так что сахара едим меньше.
5. Исключить прием алкоголя, особенно пива. Вино в небольших количествах не влияет на уровень мочевой кислоты.
6. Очень интенсивные физические нагрузки повышают уровень мочевой кислоты.
7. Нужно пить много воды. Это позволит эффективно выводить мочевую кислоту.

Если у вас повышена мочевая кислота

Ну во первых, к счастью это не всегда является патологией: кратковременный подъем может быть вариантом нормы
Если все же проблема есть, нужно разобраться, на каком уровне есть нарушение (та самая первая схема): нарушения в синтезе пуринов (тот самый метаболический синдром), алиментарный фактор (много мяса кушаем, пивом запиваем), нарушение функции почек (нарушение экскреции мочевой кислоты)или сопутствующие заболевания, сопровождающиеся разрушением тканей.

Удачи Вам и грамотных докторов.

Если вы нашли опечатку в тексте, пожалуйста, сообщите мне об этом. Выделите фрагмент текста и нажмите Ctrl+Enter .

Белок является одним из основных и жизненно необходимых пищевых ингредиентов. Он используется организмов прежде всего для пластических целей, что делает его особенно важным, совершенно незаменимым для растущего организма.

Для правильного развития ребенка необходимо регулярное и достаточное введение полноценных белков. Белки пищи частично используются организмом ребенка и для энергетических целей.

Всасывание аминокислот, а может быть и более сложных соединений - полипептидов, образующихся, как указывалось выше, под влиянием воздействия на белки пищи целого ряда протеаз пищеварительного тракта, происходит весьма совершенно и почти не зависит от возраста ребенка и способа его вскармливания.

Количество всосавшегося в кишечник азота не поддается точному учету, но практически можно считать, что количество азота в стуле является мерилом неиспользованных организмом белков пищи.

У грудных детей, вскармливаемых женским молоком, в кишечнике всасывается в среднем около 80-90% всего введенного азота. При смешанном и искусственном вскармливании процент азота, резорбируемого организмом, несколько меньше. Количество используемого азота до известной степени зависит от характера белка, его количества и сочетания с одновременно вводимыми другими ингредиентами пищи.

После приема белковой пищи количество общего остаточного и аминного азота крови нарастает, достигает у грудных детей максимума через 3-4 часа после кормления и через 5 часов снова снижается к первоначальному уровню. У новорожденных максимум пищевой гиперазотемии наступает раньше. Дальнейшая судьба всасывающихся в кишечнике аминокислот изучена мало. Аминокислоты с током крови достигают отдельных клеток организма, где и используются для построения белковых молекул тканей. Частично аминокислоты подвергаются дезаминированию; часть адсорбируется эритроцитами. Часть белков, всосавшихся в кишечнике в виде аминокислот, снова выделяется в желудок и снова подвергается расщеплению и всасыванию.

Существенное значение для оценки особенностей азотистого обмена у детей представляет задержка азота организмом. По прежним наблюдениям, процент использования азота пищи колеблется в зависимости от возраста ребенка и способа вскармливания, тогда как количество ретенированного азота зависит от возраста и почти не зависит от размеров белковой нагрузки. Однако новейшие наблюдения показывают, что как использование, так и задержка азота пищи зависят не только от возрастных потребностей организма, но и от количества введенного с пищей белка. Улучшение задержки под влиянием повышения нагрузки белками имеет, однако, известные пределы; после дачи детям более 5-6 г белка на 1 кг веса дальнейшее увеличение задержки азота приостанавливается.

Грудной ребенок с его интенсивно текущими пластическими процессами задерживает белков относительно вдвое больше, чем взрослый. Несомненно, что между энергией роста и степенью усвоения белков существует известный параллелизм, но ошибочно думать, что всякой повышенной задержке азота соответствует улучшение процессов роста и наоборот.

Большая часть избыточно введенных белков вступает в энергетический обмен и ведет к чрезмерному теплообразованию; меньшая часть временно может вести к гиперпротеинемии. Деэаминированный остаток белков, введенных с пищей в избыточном количестве, ведет к отложению жира и углеводов.

У взрослого, как правило, имеется азотистое равновесие, у детей - положительный азотистый баланс.

Под азотистым равновесием понимают такое состояние белкового метаболизма, когда количества азота, поступающего в организм с пищей, и азота, выделяющегося с мочой и стулом, равны между собой. При положительном балансе количество вводимого азота больше общего количества выводимых азотистых начал.

У детей первых дней периода новорожденности, по-видимому, может быть временно отрицательный азотистый баланс. При искусственном вскармливании отрицательное азотистое равновесие у новорожденных может сменяться положительным балансом несколько позже. Относительная величина положительного баланса азота достигает максимума в первом квартале 1-го года жизни.

За счет белков пищи должно покрываться приблизительно 10-15% общего суточного количества калорий. Дети, получающие только грудное молоко, должны получать 1,2-2 г белка в день на 1 кг веса, дети этого же возраста, находящиеся на искусственном питании, нуждаются в 3-4 г белка на единицу веса. В более старшем возрасте суточная потребность в белках равна 3,0-3,5 г на 1 кг веса.

Дети долгое время могут достаточно хорошо развиваться на гораздо меньших белковых нагрузках, что, однако, надо признать нецелесообразным.

Ребенок нуждается не в минимальном, а в оптимальном для него количестве белка, что только и может обеспечить ему вполне правильное течение процессов межуточного обмена, а следовательно, и роста.

При недостатке белков нарушается переваривание углеводов. Не должно быть, конечно, и избытка белков, что легко ведет у детей к сдвигу щелочно-кислотного равновесия в сторону ацидоза, столь небезразличного для ребенка.

Вопрос об оптимальном для ребенка белковом рационе не может ограничиваться лишь одной количественной стороной. Гораздо большее значение имеет качество вводимых белков, наличие в них аминокислот, необходимых для построения белковой молекулы тканей детского тела. К таким жизненно необходимым аминокислотам относятся триптофан, лизин, валин, лейцин, изолейцин, аргинин, метионин, треанин, фенилаланин, гистидин.

Правильный белковый обмен возможен лишь при надлежащей корреляции между белками и другими основными пищевыми ингредиентами. Введение углеводов значительно улучшает задержку белков, тогда как жиры несколько ухудшают их использование. Достаточное введение воды и солей - необходимое условие для правильного течения метаболизма белков.

Конечные продукты азотистого обмена выделяются главным образом с мочой; количественные взаимоотношения между главнейшими азотистыми компонентами мочи (мочевиной, аммиаком, мочевой кислотой, креатинином, креатином, аминокислотами и т. д.) обнаруживают определенные возрастные особенности, что зависит от своеобразия эндогенного и экзогенного обмена белков у детей.

Для новорожденных характерно большое количество выделяемого с мочой азота, достигающее в первые дни жизни 6-7% по отношению к суточному количеству мочи. С возрастом процентное содержание азота в моче уменьшается, но общее суточное количество азота, особенно в течение первых 4 лет жизни, интенсивно увеличивается; количество азота на I кг веса достигает максимальной величины к 6 годам, а затем начинает постепенно снижаться.

У грудных детей за счет мочевины выделяется азота относительно несколько меньше, а за счет аммиака и мочевой кислоты относительно значительно больше, чем у взрослого.

Большая часть азота, поступающего в организм в качестве белков пищи, выделяется с мочой в виде мочевины. У новорожденных в первые дни жизни количество мочевины достигает приблизительно 85% общего азота мочи. С 4-5-го дня жизни количество мочевины снижается до 60%. а с 2 месяцев начинает снова нарастать.

У грудных детей за счет мочевины выделяется азота на 8- 10%. а У более старших детей на 3-5%, меньше, чем у взрослых. Количество мочевины зависит от характера и количества получаемых ребенком белков. Меньшее количество мочевины надо считать явлением компенсаторным, так как ребенок нуждается в относительно больших количествах аммиака.

Однако этот вопрос не может считаться окончательно решенным; в настоящее время допускается, что фермент аргиназа действует на аминокислоту аргинин и расщепляет ее на мочевину и орнитин; орнитин соединяется с аммиаком и превращает его в аргинин и т. д. Этот путь образования мочевины еще нельзя считать достаточно изученным.

Мочевой кислоты особенно много в моче новорожденных; максимум выделения ее приходится на 3-4-й день жизни. Обильное выделение мочевой кислоты, кислая реакция и малое количество мочи являются причиной возникновения у новорожденных так называемого мочекислого инфаркта - отложения в собирательных трубочках и в ductus papillares почек солей мочевой кислоты, мочекислых аммония и натрия и щавелевокислой извести. С постепенным увеличением количества мочи мочевая кислота вымывается. Эта так называемая инфарктная моча мутна, высокого удельного веса, дает обильный красноватый осадок свободных уратов и аморфных мочекислых солей. Инфарктная моча наблюдается у 85-100% здоровых новорожденных.

Мочевая кислота и пуриновые основания мочи у грудных детей - эндогенного происхождения; происходят они главным образом из нуклеопротеидов пищеварительных соков и из слущившихся клеток кишечного эпителия.

У старших детей выделяемая с мочой мочевая кислота - экзогенно-эндогенного происхождения; количество ее в значительной мере определяется характером пищи.

Суточное количество мочевой кислоты, выделяемое с мочой, с возрастом увеличивается; количество мочевой кислоты, рассчитанное на 1 кг веса (относительное выделение), наоборот, с возрастом падает, уменьшается также и процентное отношение мочевой кислоты мочи к общему азоту мочи.

Нарастание с возрастом образования мочевины и относительное уменьшение мочевой кислоты говорят 66 уменьшении интенсивности процессов роста и о большем совершенстве обмена веществ.

Аммиак выделяется в моче в виде солей серной и фосфорной кислот. За счет аммиака у детей выделяется относительно больше азота, чем у взрослых.

Избыток аммиака в детской моче зависит от неполного превращения его в мочевину. Аммиак входит в состав солей серной и фосфорной кислот, образующихся при расщеплении белка и фосфорсодержащих органических соединений. У взрослого это осуществляется отчасти за счет щелочных земель (Na, К, Са, Mg), поступающих в достаточном количестве с пищей. Детский организм эти соли использует для пластических целей; кроме того, всасывание их в кишечнике несколько затруднено образованием мыл вследствие относительно большого содержания жира в пище ребенка.

Повышенное содержание аммиака в моче не говорит об ацидозе и ацидурии, а скорее об алкалопении, указывая на некоторый недостаток щелочей. У старших детей количество аммиака в моче зависит от характера пищи, главным образом от характера ее зольного остатка; при большом количестве овощей поступает много щелочей и, следовательно, меньше выделяется аммиака с мочой; при мясной пище, наоборот, больше образуется кислых продуктов межуточного обмена, нейтрализуемых аммиаком и выделяющихся с мочой в виде соответствующих соединений.

Аминокислоты у грудных детей выделяются с мочой в значительно большем количестве, чем у взрослых; в моче недоношенных детей их особенно много.

Креатинин происходит из креатина, образующегося в мышцах, и потому на него следует смотреть как на особый продукт мышечного обмена. Сравнительно слабым развитием у детей мышечной системы и значительно меньшим содержанием в их мышцах креатина, по-видимому, и объясняется малое содержание креатинина в моче детей.- Между количеством креатинина в моче и массой тела (вернее, количеством мышц) имеется известная пропорциональность.

В отличие от мочи взрослых, в моче детей имеется креатин. У мальчиков он обнаруживается до 6 лет, у девочек - значительно дольше, до периода полового созревания. Причины креатинурии у детей окончательно не выяснены. Надо полагать, что сказывается своеобразие углеводного (Толкачевская) и интенсивность водного обмена, ведущих к вымыванию креатина, но не исключено влияние и некоторого несовершенства обмена, вследствие чего креатин не превращается в креатинин.


План лекции 1. Конечные продукты азотистого обмена: соли аммония, мочевина и мочевая кислота. 1. Конечные продукты азотистого обмена: соли аммония, мочевина и мочевая кислота. 2. Обезвреживание аммиака: синтез глутамина и карбамилфосфата, восстановительное аминирование 2- оксоглутарата. 2. Обезвреживание аммиака: синтез глутамина и карбамилфосфата, восстановительное аминирование 2- оксоглутарата. 3. Глутамин как донор амидной группы при синтезе ряда соединений. Глутаминаза почек, образование и выведение солей аммония. Адаптивная активация глутаминазы почек при ацидозе. 3. Глутамин как донор амидной группы при синтезе ряда соединений. Глутаминаза почек, образование и выведение солей аммония. Адаптивная активация глутаминазы почек при ацидозе.


План лекции 4. Биосинтез мочевины. 4. Биосинтез мочевины. 5. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот; происхождение атомов азота мочевины. 5. Связь орнитинового цикла с превращениями фумаровой и аспарагиновой кислот; происхождение атомов азота мочевины. 6. Биосинтез мочевины как механизм предотвращения образования аммиака. Уремия. 6. Биосинтез мочевины как механизм предотвращения образования аммиака. Уремия.


КОНЕЧНЫЕ ПРОДУКТЫ: АММИАК КОНЕЧНЫЕ ПРОДУКТЫ: АММИАК Деградация аминокислот происходит преимущественно в печени. При этом непосредственно или косвенно освобождается аммиак. Значительные количества аммиака образуются при распаде пуринов и пирамидинов. Деградация аминокислот происходит преимущественно в печени. При этом непосредственно или косвенно освобождается аммиак. Значительные количества аммиака образуются при распаде пуринов и пирамидинов.



ТОКСИЧНОСТЬ АММИАКА Аммиак - NH 3 является клеточным ядом. При высоких концентрациях он повреждает главным образом нервные клетки (гепатаргическая кома). Аммиак - NH 3 является клеточным ядом. При высоких концентрациях он повреждает главным образом нервные клетки (гепатаргическая кома). В норме распад 70 г АК в сутки ведет к концентрации NH 3 в крови 60 мкмоль/л, что в 100 раз меньше концентрации глюкозы в крови. В норме распад 70 г АК в сутки ведет к концентрации NH 3 в крови 60 мкмоль/л, что в 100 раз меньше концентрации глюкозы в крови.


Токсичность аммиака В опытах на кроликах концентрация В опытах на кроликах концентрация NH 3 3 ммоль/л вызывала смерть! NH 3 3 ммоль/л вызывала смерть! Причины токсичности: Причины токсичности: 1. при рН крови в виде NH 4 +, проникает через плазм. и МХ мембраны с большим трудом. 1. при рН крови в виде NH 4 +, проникает через плазм. и МХ мембраны с большим трудом.


Нейтр. мол. своб. NH 3 легко проходят эти мембраны. При рН 7.4 только 1% NH 3 от общего количества аммиака проникает в клетки мозга и МХ. Нейтр. мол. своб. NH 3 легко проходят эти мембраны. При рН 7.4 только 1% NH 3 от общего количества аммиака проникает в клетки мозга и МХ.


Причины токсичности 2. NH 3 + а-КГ + НАДФН NH 3 + а-КГ + НАДФН 2 - Глу Н 2 О Глу + НАДФ + Н 2 О Отток альфа- КГ из фонда ЦТК и как следствие – снижение скорости окисления глюкозы


Токсичность аммиака Аммиак настолько токсичен, что должен быть немедленно удален посредством того или иного экскреторного механизма, либо путем включения в какое-то другое азотсодержащее соединение, не обладающее подобной токсичностью. Аммиак настолько токсичен, что должен быть немедленно удален посредством того или иного экскреторного механизма, либо путем включения в какое-то другое азотсодержащее соединение, не обладающее подобной токсичностью.


Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир" title="Механизмы детоксикации аммиака 1. Синтез глутамина: Глн, аспарагина: Асн. 1. Синтез глутамина: Глн, аспарагина: Асн. 2. Синтез мочевины. 2. Синтез мочевины. 3. Аминирование а-КГ --> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир" class="link_thumb"> 11 Механизмы детоксикации аммиака 1. Синтез глутамина: Глн, аспарагина: Асн. 1. Синтез глутамина: Глн, аспарагина: Асн. 2. Синтез мочевины. 2. Синтез мочевины. 3. Аминирование а-КГ --> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидирование белков. Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир"> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидирование белков."> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир" title="Механизмы детоксикации аммиака 1. Синтез глутамина: Глн, аспарагина: Асн. 1. Синтез глутамина: Глн, аспарагина: Асн. 2. Синтез мочевины. 2. Синтез мочевины. 3. Аминирование а-КГ --> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир"> title="Механизмы детоксикации аммиака 1. Синтез глутамина: Глн, аспарагина: Асн. 1. Синтез глутамина: Глн, аспарагина: Асн. 2. Синтез мочевины. 2. Синтез мочевины. 3. Аминирование а-КГ --> Глу. 3. Аминирование а-КГ --> Глу. 4. Амидирование белков. 4. Амидир">


Механизмы детоксикации аммиака 5. Синтез пурин. и пирамид. структур. 5. Синтез пурин. и пирамид. структур. 6. Нейтрализация в почках кислотами и выделение с мочой аммонийных солей. 6. Нейтрализация в почках кислотами и выделение с мочой аммонийных солей.


Обезвреживание аммиака В организмах автотрофов большая часть образующегося аммиака может вновь использоваться для синтеза новых клеточных структур. Гетеротрофы же обычно получают с пищей значительное количество белка, усвоение которого легко может привести к накоплению большого количества конечных продуктов азотистого обмена. Удаление этих отходов требует создания соответствующего аппарата. В организмах автотрофов большая часть образующегося аммиака может вновь использоваться для синтеза новых клеточных структур. Гетеротрофы же обычно получают с пищей значительное количество белка, усвоение которого легко может привести к накоплению большого количества конечных продуктов азотистого обмена. Удаление этих отходов требует создания соответствующего аппарата.


Обезвреживание аммиака Организм, живущий в водной среде, может выделять аммиак непосредственно, поскольку он будет немедленно разбавлен водой, не оказывая никакого или почти никакого вредного влияния на клетки. Экскреция аммиака у животных, обитающих в засушливых областях, потребовала бы для его разведения использования собственных водных ресурсов. Организм, живущий в водной среде, может выделять аммиак непосредственно, поскольку он будет немедленно разбавлен водой, не оказывая никакого или почти никакого вредного влияния на клетки. Экскреция аммиака у животных, обитающих в засушливых областях, потребовала бы для его разведения использования собственных водных ресурсов. Поэтому у многих видов аммиак превращается в организме в некоторые другие соединения, обладающие меньшей токсичностью. Поэтому у многих видов аммиак превращается в организме в некоторые другие соединения, обладающие меньшей токсичностью.


Восстановительное аминирование Большинство организмов обладает способностью реутилизировать аммиак за счет реакции, катализируемой глутаматдегидрогеназой. Большинство организмов обладает способностью реутилизировать аммиак за счет реакции, катализируемой глутаматдегидрогеназой. А-Кетоглутарат + NH3 + НАДФН.Н+ А-Кетоглутарат + NH3 + НАДФН.Н+ Глутамат + НАДФ+. Глутамат + НАДФ+. Это восстановительное аминирование. Это восстановительное аминирование. Однако все же некоторая часть образовавшегося аммиака остается неиспользованной и в конце концов выводится из организма беспозвоночных и позвоночных либо в свободном виде, либо в форме мочевой кислоты, либо в форме мочевины. Однако все же некоторая часть образовавшегося аммиака остается неиспользованной и в конце концов выводится из организма беспозвоночных и позвоночных либо в свободном виде, либо в форме мочевой кислоты, либо в форме мочевины.












МОЧЕВИНА МОЧЕВИНА У человека инактивация аммиака осуществляется прежде всего за счет синтеза мочевины, часть NH 3 выводится непосредственно почками. У человека инактивация аммиака осуществляется прежде всего за счет синтеза мочевины, часть NH 3 выводится непосредственно почками.


АММОНИОТЕЛИЧЕСКИЕ ОРГАНИЗМЫ У разных видов позвоночных инактивация и выведение аммиака производятся различными способами. Живущие в воде животные выделяют аммиак непосредственно а воду; например, у рыб он выводится через жабры (аммониотелические организмы). У разных видов позвоночных инактивация и выведение аммиака производятся различными способами. Живущие в воде животные выделяют аммиак непосредственно а воду; например, у рыб он выводится через жабры (аммониотелические организмы).


УРЕОТЕЛИЧЕСКИЕ ОРГАНИЗМЫ Наземные позвоночные, в том числе человек, выделяют лишь небольшое количество аммиака, а основная его часть превращается в мочевину (уреотелические организмы). Наземные позвоночные, в том числе человек, выделяют лишь небольшое количество аммиака, а основная его часть превращается в мочевину (уреотелические организмы).


УРИКОТЕЛИЧЕСКИЕ ОРГАНИЗМЫ Птицы и рептилии, напротив, образуют мочевую кислоту, которая в связи с экономией воды выделяется преимущественно в твердом виде (урикотелические организмы). Птицы и рептилии, напротив, образуют мочевую кислоту, которая в связи с экономией воды выделяется преимущественно в твердом виде (урикотелические организмы).


Синтез мочевины Мочевина в противоположность аммиаку это нейтральное и нетоксичное соединение. Небольшая молекула мочевины может проходить через мембраны, а также из-за ее хорошей растворимости в воде мочевина легко переносится кровью и выводится с мочой. Мочевина в противоположность аммиаку это нейтральное и нетоксичное соединение. Небольшая молекула мочевины может проходить через мембраны, а также из-за ее хорошей растворимости в воде мочевина легко переносится кровью и выводится с мочой.


СТАДИИ СИНТЕЗА МОЧЕВИНЫ Мочевина образуется в результате циклической последовательности реакций, протекающих в печени. Мочевина образуется в результате циклической последовательности реакций, протекающих в печени. Оба атома азота берутся из свободного аммиака и за счет дезаминирования аспартата, карбонильная группа из гидрокарбоната. Оба атома азота берутся из свободного аммиака и за счет дезаминирования аспартата, карбонильная группа из гидрокарбоната.


Первая реакция На первой стадии, реакция , из гидрокарбоната (НСО3-) и аммиака с потреблением 2 молекул АТФ образуется карбамилфосфат. На первой стадии, реакция , из гидрокарбоната (НСО3-) и аммиака с потреблением 2 молекул АТФ образуется карбамилфосфат.




Вторая стадия Вторая стадия На следующей стадии, реакция , карбамоильный остаток переносится на орнитин с образованием цитруллина. Для этой реакции вновь необходима энергия в форме АТФ, который при этом расщепляется на АМФ и дифосфат. На следующей стадии, реакция , карбамоильный остаток переносится на орнитин с образованием цитруллина. Для этой реакции вновь необходима энергия в форме АТФ, который при этом расщепляется на АМФ и дифосфат.



















ВЕЛОСИПЕД КРЕБСА Фумарат, образующийся в цикле мочевины, может в результате двух стадий цитратного цикла через малат переходить в оксалоацетат, который за счет трансаминирования далее прекращается в аспартат. Последний также вновь вовлекается в цикл мочевины. Фумарат, образующийся в цикле мочевины, может в результате двух стадий цитратного цикла через малат переходить в оксалоацетат, который за счет трансаминирования далее прекращается в аспартат. Последний также вновь вовлекается в цикл мочевины.


ЭНЕРГОЗАВИСИМЫЙ ПРОЦЕСС Биосинтез мочевины требует больших затрат энергии. Энергия поставляется за счет расщепления четырех высокоэнергетических связей: двух при синтезе карбамилфосфата и двух (!) при образовании аргининосукцината (АТФ АМФ + PPi, РРi 2Pi). Биосинтез мочевины требует больших затрат энергии. Энергия поставляется за счет расщепления четырех высокоэнергетических связей: двух при синтезе карбамилфосфата и двух (!) при образовании аргининосукцината (АТФ АМФ + PPi, РРi 2Pi).


КОМПАРТМЕНТАЛИЗАЦИЯ Цикл мочевины протекает исключительно в печени. Он разделен на два компартмента: митохондрии и цитоплазму. Прохождение через мембрану промежуточных соединений цитруллина и орнитина возможно только с помощью переносчиков. Цикл мочевины протекает исключительно в печени. Он разделен на два компартмента: митохондрии и цитоплазму. Прохождение через мембрану промежуточных соединений цитруллина и орнитина возможно только с помощью переносчиков.


АЛЛОСТЕРИЧЕСКАЯ РЕГУЛЯЦИЯ СИНТЕЗА МОЧЕВИНЫ Скорость синтеза мочевины определяется первой реакцией цикла . Карбамоилфосфатсинтаза активна только в присутствии N- ацетилглутамата. Состояние обмена веществ (уровень аргинина, энергоснабжение) сильно зависит от концентрации этого аллостерического эффектора. Скорость синтеза мочевины определяется первой реакцией цикла . Карбамоилфосфатсинтаза активна только в присутствии N- ацетилглутамата. Состояние обмена веществ (уровень аргинина, энергоснабжение) сильно зависит от концентрации этого аллостерического эффектора. Скорость синтеза мочевины определяется первой Скорость синтеза мочевины определяется первой



gastroguru © 2017