Определение точек экстремума функции. Внеклассный урок - экстремум функции

Точка х 0 называетсяточкой максимума (минимума ) функцииf(х), если в некоторой окрестности точки х 0 выполняется неравенствоf(х) ≤f(х 0) (f(х) ≥f(х 0)).

Значение функции в этой точке называется соответственно максимумом илиминимумом функции. Максимум и минимум функции объединяются общим названиемэкстремума функции.

Экстремум функции в этом смысле часто называют локальным экстремумом , подчеркивая тот факт, что это понятие связано лишь с достаточно малой окрестностью точки х 0 . На одном и том же промежутке функция может иметь несколько локальных максимумов и минимумов, которые не обязательно совпадают сглобальным максимумом илиминимумом (т.е. наибольшим или наименьшим значением функции на всем промежутке).

Необходимое условие экстремума . Для того, чтобы функция имела экстремум в точке, необходимо, чтобы ее производная в этой точке равнялась нулю или не существовала.

Для дифференцируемых функций это условие вытекает из теоремы Ферма. Кроме того, оно предусматривает и случай, когда функция имеет экстремум в точке, в которой она не дифференцируема.

Точки, в которых выполнено необходимое условие экстремума, называются критическими (илистационарными для дифференцируемой функции). Эти точки должны входить в область определения функции.

Таким образом, если в какой-либо точке имеется экстремум, то эта точка критическая (необходимость условия). Заметим, что обратное утверждение неверно. Критическая точка вовсе не обязательно является точкой экстремума, т.е. сформулированное условие не является достаточным.

Первое достаточное условие экстремума . Если при переходе через некоторую точку производная дифференцируемой функции меняет свой знак с плюса на минус, то это точка максимума функции, а если с минуса на плюс, - то точка минимума.

Доказательство этого условия вытекает из достаточного условия монотонности (при изменении знака производной происходит переход либо от возрастания функции к убыванию, либо от убывания к возрастанию).

Второе достаточное условие экстремума . Если первая производная дважды дифференцируемой функции в некоторой точке равна нулю, а вторая производная в этой точке положительна, то это точка минимума функции; а если вторая производная отрицательна, то это точка максимума.

Доказательство этого условия также основано на достаточном условии монотонности. В самом деле, если вторая производная положительна, то первая производная является возрастающей функцией. Поскольку в рассматриваемой точке она равна нулю, следовательно, при переходе через нее она меняет знак с минуса на плюс, что возвращает нас к первому достаточному условию локального минимума. Аналогично если вторая производная отрицательна, то первая убывает и меняет знак с плюса на минус, что является достаточным условием локального максимума.

Исследование функции на экстремум в соответствии со сформулированными теоремами включает следующие этапы:

1. Найти первую производную функции f`(x).

2. Проверить выполнение необходимого условия экстремума, т.е. найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Проверить выполнение достаточного условия экстремума, т.е. либо исследовать знак производной слева и справа от каждой критической точки, либо найти вторую производную f``(x) и определить ее знак в каждой критической точке. Сделать вывод о наличии экстремумов функции.

4. Найти экстремумы (экстремальные значения) функции.

Нахождение глобального максимума и минимума функции на некотором промежутке также имеет большое прикладное значение. Решение этой задачи на отрезке основано на теореме Вейерштрасса, в соответствии с которой непрерывная функция принимает на отрезке свои наибольшее и наименьшее значения. Они могут достигаться как в точках экстремума, так и на концах отрезка. Поэтому решение включает следующие этапы:

1. Найти производную функции f`(x).

2. Найти критические точки функции f(x), в которых производнаяf`(x) = 0 или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее и наименьшее.

© БГЭУ Лекция № 2

проф. Дымков М. П.

Замечание 1. Обратное утверждение звучит несколько иначе. Если

функция возрастает на промежутке, то f ′ (x 0 )≥ 0 или не существует.

Пример 1.

y = x3

возрастает на

всей числовой

соответственно

f (x )> 0 , но в точке

x = 0 производная

f (0)= 0.

Пример 2 . Функция

x ≥ 0 ,

не имеет производной в точке

х=0

x < 0

(левая и правая производная различны), однако она возрастает при всех значениях х , в том числе и в точкех = 0.

Замечание 2. Опираясь на более «мягкие» условия, можно сформулировать прямую теорему: если производная функции, непрерывной на промежутке, неотрицательна, то функция на этом промежутке не убывает. Тогда прямая и обратная теоремы на формализованном языке звучат так:

для того,

чтобы непрерывная на промежутке функция y = f(x) была

неубывающей

этом промежутке, необходимо

и достаточно, чтобы

f ′ (x0 ) ≥ 0 .

Понятие экстремума

Определение.

x0 называется точкой

локального максимума

функции f (x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≤ f(x0 ) .

Определение. Точка x0 называется точкой локального минимума функции f(x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≥ f(x0 ) .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Максимум и минимум функции называются ее локальными экстремумами

(extremum – крайний).

Определение. Точка x0 называется точкой строгого локального максимума (минимума) функции y= f(x) , если для всех х из окрестности точки x0 верно строгое неравенство f(x) < f(x0 ) (соответственно

f (x) > f(x0 ) ).

Замечание. В приведенном определении локального экстремума мы не предполагаем непрерывности функции в точкеx 0 .

X ≠ 0 ,

разрывна в точке

х = 0, но имеет в этой

Функция y =

x = 0

точке максимум, поскольку существует окрестность точки х = 0, в которойf (x )< f (x 0 ).

Наибольшее (наименьшее) значение функции на промежутке называется глобальным экстремумом. Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.

Необходимое условие экстремума

Теорема 2. (о необходимом условии экстремума).

Если функция y = f(x) имеет экстремум в точке x0 , то ее производная f′ (x0 ) в этой точке либо равна нулю, либо не существует.

◄Если в точке x 0 функция имеет экстремум и дифференцируема, то в

некоторой окрестности этой точки выполнены условия теоремы Ферма, следовательно, производная функции в этой точке равна нулю.

Но функция y = f (x ) может иметь экстремум и не быть дифференцируемой в этой точке. Достаточно указать пример. Примером может

служить функция y =

которая имеет минимум в точке

x = 0,

однако не

дифференцируема в этой точке.

Замечание

Геометрическую

иллюстрацию теоремы дает Рис.1. Функция

y = f (x ), график которой представлен на этом

y = f (x)

рисунке, имеет экстремумы в точках x 1 , x 3 , x 4 ,

производная

существует,

она равна нулю, в

обращается

бесконечность.

точках x 2 ,

функция экстремума не имеет,

причем в точке x 2 производная обращается в

бесконечность, в точке x 5

производная равна

Замечание 2. Точки, в которых выполняется необходимое условие

экстремума для непрерывной функции, называются критическими

Они определяются из уравнения

f (x )= 0

(стационарные

точки) или f

(x )= ∞ .

Замечание 3 . Не в каждой своей критической точке функция обязательно имеет максимум или минимум.

Пример 4. Рассмотрим функциюy = x 3 . Критической для этой функции

является точка х = 0, что следует из уравненияf ′ (x )= 3x 2 = 0. Однако эта функция при всехх является возрастающей и экстремума не имеет.

© БГЭУ Лекция № 2

Исследование функций с помощью производных проф. Дымков М. П.

Теорема 3.

(о достаточных условиях экстремума).

Пусть для

y = f(x) выполнены следующие условия:

1) y = f(x)

непрерывна в окрестности точки x0 ;

(x )= 0

f (x) = ∞

меняет свой знак.

(x) при переходе через точку x0

Тогда в точке x = x0 функция y= f(x) имеет экстремум:

минимум , если при переходе через точку x0

производная меняет свой знак

с минуса на плюс;

максимум , если при переходе через точку

x0 производная меняет свой

знак с плюса на минус.

f (x) при переходе через точку x0 не меняет своего

Если производная

знака, экстремума в точке x = x0 нет.◄

Условия теоремы можно свести в следующую таблицу

Знак производной

Экстремум

Максимум

Так как по условию f (x )< 0 приx < x 0 , то на левом относительно точки

x 0 интервале функция

убывает. Так как f (x )> 0 приx > x 0 ,

y = f(x)

относительно точки

интервале

функция f (x ) возрастает.

Следовательно,

f (x0 )

есть наименьшее значение функции f (x ) в окрестности

x 0 , а это означает, чтоf (x 0 )

есть локальный минимум функции

f (x) .

Если при переходе с левого интервала на правый функция продолжает убывать, то в точке x 0 не будет достигаться минимальное значение функции

(экстремума нет).

Аналогично доказывается существование максимума.

На рис. 2 a-h представлены возможные случаи наличия или отсутствия экстремума непрерывной функции, производная которой в критической точке равна нулю или обращается в бесконечность.

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

Замечание.

Если условие непрерывности функции в

не выполнено, то вопрос о наличии

экстремума остается открытым.

Пример 5.

Рассмотрим

разрывную

X + 1,

x ≤ 0,

(рис.3). Производная

этой функции меняет знак

f (x) =

x > 0

переходе через точку x 0 = 0 ,

однако функция в точке

x 0= 0

экстремума не

Пример 6. Пусть дана функция

X ≠ 0,

(рис.4). Как видно из рисунка,

f (x)

f (x) =

x = 0

имеет локальный максимум в точке

x 0= 0

Однако функция

имеет разрыв в точке x 0 = 0 .

Замечание

функция имеет в точке x 0 экстремум, например,

минимум, то необязательно слева от точки

x 0 функция монотонно убывает, а

справа от x 0 монотонно возрастает.

Пример 7. Пусть дана функция

2 − cos

X ≠ 0,

f (x) =

x = 0

y = 3 x2

y = x

Можно показать, что в

х = 0

непрерывна

Производная функции

f (x) = 2 x

− sin

в любой окрестности

точки х = 0 меняет знак бесконечно много раз. Поэтому функцияf (x ) не

является монотонно убывающей или возрастающей ни слева, ни справа от точки х = 0.

Схема исследования функции на экстремум:

1) найти производную f ′ (x );

2) найти критические точки, т.е. такие значения х , в которыхf ′ (x )= 0 или

f ′ (x ) = ∞;

3) исследовать знак производной слева и справа от каждой критической

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

точки. Если при переходе через критическую точку

производная f (x )

свой знак с плюса на минус, то в точке x 0

f (x)

имеет максимум, если

знак f (x )

меняется с минуса на плюс,

то в точке x 0

функция f (x )

Если при переходе х через критическую точкуx 0 знакf

(x ) не

меняется, то в точке x 0 функцияf (x ) не имеет ни максимума, ни минимума; 4) найти значения функции в экстремальных точках.

Теорема 4. (2 -ое достаточное условие экстремума). Пусть для функцииy = f (x ) выполнены следующие условия:

1. y = f (x ) непрерывна в окрестности точкиx 0 ,

2. f ′ (x )= 0 в точкеx 0

3. f ′′ (x )≠ 0 в точкеx 0 .

Тогда, в точке x 0

достигается экстремум, причем:

если f ′′ (x 0 )> 0, то в точке

x = x0

y = f(x)

имеет минимум,

f ′′ (x 0 )< 0 , то

x = x0

функция y = f (x ) имеет максимум.

◄ По определению 2-й производнойf

f ′ (x) − f′ (x0 )

) = lim

− x

x→ x0

Но по условию f

) = lim

(x )= 0.

− x

(x )> 0, то

x→ x0

f ′ (x)

в некоторой

окрестности

x = x.

x < x

x − x0

x > x0

дробь положительна,

при условии

положительна, если f (x )< 0 .

f (x ) при переходе через точку

x = x0

меняет знак,

f (x )> 0 . Следовательно,

поэтому есть экстремум. Знак производной меняется с минуса на плюс, значит, это минимум. Аналогично доказывается случай f ′′ (x 0 )< 0 .

Пример 8 . Исследовать на экстремум функциюy = x 2 + 2x + 3. Находим производнуюy ′= 2x + 2 .

1) Находим критические точки, для чего приравниваем к нулю производную: y ′= 2x + 2= 0,→ x 0 = - 1.

2) Изучаем знак производной слева и справа от этой точки (рис. 6).

Поскольку знак производной меняется с минуса на плюс, в точке х = − 1 достигается минимум.

3) Находим величину минимума: ymin (− 1)= 2.

.

3) Исследуем знак у" слева и справа от точкиx = 0. Очевидно,f ′ (x )< 0 ,

минимума данной функции.

4) ymin (0)= 1.

Пример 10.

Исследовать на экстремум функцию y = e -x 2 .

1) Находим первую производную: y ′= - 2xe -x 2 .

2) Приравнивая производную нулю, находим единственную критическую точку x = 0.

3) Далее находим вторую производную: y ′′= − 2e - x 2 + 4x 2 e − x 2 . Ее значение

в точке x = 0 равно -2.

4) Делаем вывод о наличии максимума функции и вычисляем: y max (0)= 1.

Наибольшее и наименьшее значение функции, непрерывной на отрезке

Если функция f (x ) определена и непрерывна на отрезке [а ;b ], то,

согласно 2-й теореме Вейерштрасса, она на этом отрезке достигает своего наибольшего и наименьшего значения.

Если свое наибольшее значение М функцияf (x ) принимает вовнутренней точке x 0 отрезка [а ;b ], тоM = f (x 0 ) будет локальным максимумом функцииf (x ), т. к. в этом случае существует окрестность точкиx 0 такая, что значенияf (x ) для всех точекх из этой окрестности будут не

больше f (x 0 ) .

Однако свое наибольшее значение М функцияf (x )может принимать и на концах отрезка [а ;b ]. Поэтому, чтобы найти наибольшее значениеМ непрерывной на отрезке [а ;b ] функцииf (x ), надо найти все максимумы функции в интервале(а ;b ) и значенияf (x ) на концах отрезка [а ;b ] и выбрать

среди них наибольшее число. Вместо ограничиться нахождением значений Наименьшим значением m непрерывной

исследования на максимум можно функции в критических точках. на отрезке [а ;b ] функцииf (x ) будет

наименьшее число среди всех минимумов функции f (x ) в интервале (a ;b ) и значенийf (a ) иf (b ) .

f ′ (x) -

Исследовать на экстремум функцию y = 3

1) Находим производную y ′=

Обратимся к графику функции у = х 3 – 3х 2 . Рассмотрим окрестность точки х = 0, т.е. некоторый интервал, содержащий эту точку. Логично, что существует такая окрестность точки х = 0, что наибольшее значение функция у = х 3 – 3х 2 в этой окрестности принимает в точке х = 0. Например, на интервале (-1; 1) наибольшее значение, равное 0, функция принимает в точке х = 0. Точку х = 0 называют точкой максимума этой функции.

Аналогично, точка х = 2 называется точкой минимума функции х 3 – 3х 2 , так как в этой точке значение функции не больше ее значения в иной точке окрестности точки х = 2, например, окрестности (1,5; 2,5).

Таким образом, точкой максимума функции f(х) называется точка х 0 , если существует окрестность точки х 0 – такая, что выполняется неравенство f(х) ≤ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 0 – это точка максимума функции f(х) = 1 – х 2 , так как f(0) = 1 и верно неравенство f(х) ≤ 1 при всех значениях х.

Точкой минимума функции f(х) называется точка х 0 , если существует такая окрестность точки х 0 , что выполняется неравенство f(х) ≥ f(х 0) для всех х из этой окрестности.

Например, точка х 0 = 2 – это точка минимума функции f(х) = 3 + (х – 2) 2 , так как f(2) = 3 и f(х) ≥ 3 при всех х.

Точками экстремума называются точки минимума и точки максимума.

Обратимся к функции f(х), которая определена в некоторой окрестности точки х 0 и имеет в этой точке производную.

Если х 0 – точка экстремума дифференцируемой функции f(х), то f "(х 0) = 0. Это утверждение называют теоремой Ферма.

Теорема Ферма имеет наглядный геометрический смысл: в точке экстремума касательная параллельна оси абсцисс и поэтому ее угловой коэффициент
f "(х 0) равен нулю.

Например, функция f(х) = 1 – 3х 2 имеет в точке х 0 = 0 максимум, ее производная f "(х) = -2х, f "(0) = 0.

Функция f(х) = (х – 2) 2 + 3 имеет минимум в точке х 0 = 2, f "(х) = 2(х – 2), f "(2) = 0.

Отметим, что если f "(х 0) = 0, то этого недостаточно, чтобы утверждать, что х 0 – это обязательно точка экстремума функции f(х).

Например, если f(х) = х 3 , то f "(0) = 0. Однако точкой экстремума точка х = 0 не является, так как на всей числовой оси функция х 3 возрастает.

Итак, точки экстремума дифференцируемой функции необходимо искать лишь среди корней уравнения
f "(х) = 0, но корень этого уравнения не всегда является точкой экстремума.

Стационарными точками называют точки, в которых производная функции равна нулю.

Таким образом, для того, чтобы точка х 0 была точкой экстремума, необходимо, чтобы она была стационарной точкой.

Рассмотрим достаточные условия того, что стационарная точка является точкой экстремума, т.е. условия, при выполнении которых стационарная точка является точкой минимума или максимума функции.

Если производная левее стационарной точки положительна, а правее – отрицательна, т.е. производная меняет знак «+» на знак «–» при переходе через эту точку, то эта стационарная точка – это точка максимума.

Действительно, в данном случае левее стационарной точки функция возрастает, а правее – убывает, т.е. данная точка – это точка максимума.

Если производная меняет знак «–» на знак «+» при переходе через стационарную точку, то эта стационарная точка является точкой минимума.

Если производная знак не меняет при переходе через стационарную точку, т.е. слева и справа от стационарной точки производная положительна или отрицательна, то эта точка не является точкой экстремума.

Рассмотрим одну из задач. Найти точки экстремума функции f(х) = х 4 – 4х 3 .

Решение.

1) Найдем производную: f "(х) = 4х 3 – 12х 2 = 4х 2 (х – 3).

2) Найдем стационарные точки: 4х 2 (х – 3) = 0, х 1 = 0, х 2 = 3.

3) Методом интервалов устанавливаем, что производная f "(х) = 4х 2 (х – 3) положительна при х > 3, отрицательна при х < 0 и при 0 < х < 3.

4) Так как при переходе через точку х 1 = 0 знак производной не меняется, то эта точка не является точкой экстремума.

5) Производная меняет знак «–» на знак «+» при переходе через точку х 2 = 3. Поэтому х 2 = 3 – точка минимума.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее название – экстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Пример.

Найти экстремумы функции .

Решение.

Начнем с области определения:

Продифференцируем исходную функцию:

x=1 , то есть, это точка возможного экстремума. Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x=1 - точка максимума. Тогда - максимум функции.

Графическая иллюстрация.

Ответ:

Третье достаточное условие экстремума функции.

Пусть функция y=f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .

Пример.

Найти точки экстремума функции .

Решение.

Исходная функция является целой рациональной, ее областью определения является все множество действительных чисел.

Продифференцируем функцию:

Производная обращается в ноль при , следовательно, это точки возможного экстремума. Воспользуемся третьим достаточным условием экстремума.

Находим вторую производную и вычисляем ее значение в точках возможного экстремума (промежуточные вычисления опустим):

Следовательно, - точка максимума (для третьего достаточного признака экстремума имеем n=1 и ).

Для выяснения характера точек находим третью производную и вычисляем ее значение в этих точках:

Следовательно, - точка перегиба функции (n=2 и ).

Осталось разобраться с точкой . Находим четвертую производную и вычисляем ее значение в этой точке:

Следовательно, - точка минимума функции.

Графическая иллюстрация.

Ответ:

Точка максимума, - точка минимума функции.

10. Экстремумы функции Определение экстремума

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x)  0

(f " (x)  0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 (<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.



gastroguru © 2017