Развертка 4 мерный куб. Тесеракт.Четырёхмерное пространство

Геометрия

Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства .

В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.

Построение тессеракта на плоскости

Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.

Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку . Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двумерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двумерные или трёхмерные пространства . Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:

Третья картинка демонстрирует тессеракт в изометрии , относительно точки построения. Это представление представляет интерес при использовании тессеракта как основания для топологической сети, чтобы связать многократные процессоры в параллельных вычислениях.

На трёхмерное пространство

Одна из проекций тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трёхмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.

  • Шесть усечённых пирамид по краям тессеракта - это изображения равных шести кубов. Однако эти кубы для тессеракта - как квадраты (грани) для куба. Но на самом деле тессеракт можно разделить на бесконечное количество кубов, как куб - на бесконечное количество квадратов, или квадрат - на бесконечное число отрезков.

Ещё одна интересная проекция тессеракта на трёхмерное пространство представляет собой ромбододекаэдр с проведёнными четырьмя его диагоналями, соединяющими пары противоположных вершин при больших углах ромбов. При этом 14 из 16 вершин тессеракта проецируются в 14 вершин ромбододекаэдра , а проекции 2 оставшихся совпадают в его центре. В такой проекции на трёхмерное пространство сохраняются равенство и параллельность всех одномерных, двухмерных и трёхмерных сторон.

Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развёрнута в шесть квадратов). Существует 261 различная развёртка тессеракта . Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

  • У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
  • В одном эпизоде «Приключений Джимми Нейтрона» «мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы » (1963) Роберта Хайнлайна .
  • Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Доме четырёх измерений» («Дом, который построил Тил», ) он описал дом, построенный как развёртка тессеракта, а затем вследствие землетрясения «сложившийся» в четвёртом измерении и ставший «реальным» тессерактом.
  • В романе «Дорога славы » Хайнлайна описана гиперразмерная шкатулка, которая была изнутри больше, чем снаружи.
  • Рассказ Генри Каттнера «Все тенали бороговы» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
  • В романе Алекса Гарленда (), термин «тессеракт» используется для трёхмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
  • Сюжет фильма «Куб 2: Гиперкуб » сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
  • Телесериал «Андромеда » использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем .
  • Картина «Распятие на кресте » (Corpus Hypercubus) Сальвадора Дали ().
  • Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
  • В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
  • В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
  • В сериале «Школа „Чёрная дыра“ » в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает «складываться как математический тессеракт».
  • Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени».
  • TesseracT название британской джент группы.
  • В серии фильмов Кинематографическая вселенная Marvel Тессеракт - это ключевой элемент сюжета, космический артефакт в форме гиперкуба.
  • В рассказе Роберта Шекли «Мисс Мышка и четвертое измерение» один писатель-эзотерик, знакомец автора, пытается увидеть тессеракт, часами глядя на сконструированный им прибор: шар на ножке с воткнутыми в него стержнями, на которые насажены кубы, обклеенные всеми подряд эзотерическими символами. В рассказе упоминается труд Хинтона.
  • В фильмах Первый Мститель, Мстители. Тессеракт-энергия все вселенной

Другие названия

  • Гексадекахорон (англ. Hexadecachoron )
  • Октохорон (англ. Octachoron )
  • Тетракуб
  • 4-Куб
  • Гиперкуб (если не оговаривается число измерений)

Примечания

Литература

  • Charles H. Hinton. Fourth Dimension, 1904. ISBN 0-405-07953-2
  • Martin Gardner, Mathmatical Carnival, 1977. ISBN 0-394-72349-X
  • Ian Stewart, Concepts of Modern Mathematics, 1995. ISBN 0-486-28424-7

Ссылки

На русском языке
  • Программа Transformator4D. Формирование моделей трёхмерных проекций четырёхмерных объектов (в том числе и Гиперкуба).
  • Программа, реализующая построение тессеракта и все его афинные преобразования, с исходниками на С++.

На английском языке

τέσσαρες ἀκτίνες - четыре луча) - 4-мерный Гиперкуб - аналог в 4-мерном пространстве.

Изображение является проекцией () четырехмерного куба на трехмерное пространство.

Обобщение куба на случаи с числом измерений, большим, чем 3, называется гиперкубом или (en:measure polytopes). Формально гиперкуб определяется как четырёх равных отрезков.

Данная статья в основном описывает 4-мерный гиперкуб , называемый тессеракт .

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из нашего трёхмерного .

В одномерном «пространстве» - на линии - выделим АВ длиной L. На двумерной на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трем!) на расстояние L, мы получим гиперкуб.

Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб . Воспользуемся для этого уже знакомым методом аналогий.

Возьмем проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Ее часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав восемь граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс еще один - грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в 4-мерное пространство, представленных в нижеследующей таблице.

September 19th, 2009
Тессеракт (от др.-греч. τέσσερες ἀκτῖνες — четыре луча) — четырёхмерный гиперкуб — аналог куба в четырёхмерном пространстве.

Изображение является проекцией (перспективой) четырёхмерного куба на трёхмерное пространство.

Согласно Оксфордскому словарю, слово «tesseract» было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853—1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру «тетракубом».

Геометрия

Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями, пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.

В одномерном «пространстве» — на линии — выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб ABCDEFGHIJKLMNOP.
http://upload.wikimedia.org/wikipedia/ru/1/13/Построение_тессеракта.PNG

Одномерный отрезок АВ служит стороной двумерного квадрата ABCD, квадрат — стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат — четыре вершины, куб — восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра — по 12 дают начальное и конечное положения исходного куба, и ещё 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани — 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Развёртка тессеракта

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями — боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» — трёхмерные грани — будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Её часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру — развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один — грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного — конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двухмерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двухмерные или трёхмерные пространства. Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:


На трёхмерное пространство

Проекция тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трехмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.



Шесть усеченных пирамид по краям тессеракта — это изображения равных шести кубов.
Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развернута в шесть квадратов). Существует 261 различная развёртка тессеракта. Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
В одном эпизоде «Приключений Джимми Нейтрона»: «Мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы» 1963 Хайнлайна.
Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Дом четырех измерений» («Дом, который построил Тил») (1940) он описал дом, построенный как развёртка тессеракта.
В романе «Дорога славы» Хайнлайна описана гиперразмерная посуда, которая была изнутри больше, чем снаружи.
Рассказ Генри Каттнера «Mimsy Were the Borogoves» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
В романе Алекса Гарленда (1999), термин «тессеракт» используется для трехмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
Сюжет фильма «Куб 2: Гиперкуб» сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
Телесериал «Андромеда» использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем.
Картина «Распятие на кресте» (Corpus Hypercubus) Сальвадора Дали (1954)
Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
В сериале «Школа „Чёрная дыра“» в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает складываться как математический тессеракт.
Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени»

Эволюция человеческого мозга проходила в трехмерном пространстве. Поэтому нам сложно представить себе пространства с размерностью больше трех. Фактически человеческий мозг не может себе представить геометрические объекты с размерностью более трех. И в то же время мы без труда представляем себе геометрические объекты с размерностью не только три, но и с размерностью два и один.

Различие и аналогия между одномерным и двумерным пространствами, а также различие и аналогия между двумерным и трехмерным пространствами позволяют нам чуть-чуть приоткрыть ширму таинственности, которая отгораживает нас от пространств большей размерности. Чтобы понять, как используется эта аналогия, рассмотрим очень простой четырехмерный объект - гиперкуб, то есть четырехмерный куб. Пусть для определенности, допустим, мы хотим решить конкретную задачу, а именно, посчитать количество квадратных граней четырехмерного куба. Всё рассмотрение далее будет очень нестрогим, без всяких доказательств, чисто по аналогии.

Чтобы понять, как строится гиперкуб из обычного куба, надо сначала посмотреть, как строится обычный куб из обычного квадрата. Для оригинальности изложения этого материала, будем здесь обычный квадрат называть СубКубом (и не будем путать его с суккубом).

Чтобы построить куб из субкуба, надо протянуть субкуб в направлении перпендикулярном плоскости субкуба по направлению третьего измерения. При этом из каждой стороны первоначального субкуба вырастет субкуб, который является боковой двумерной гранью куба, которые ограничат с четырех сторон трехмерный объем куба, по две перпендикулярно каждому направлению в плоскости субкуба. И вдоль новой третьей оси тоже имеются два субкуба, ограничивающие трехмерный объем куба. Это та двумерная грань, где первоначально находился наш субкуб и та двумерная грань куба, куда субкуб пришел под конец строительства куба.

То, что Вы сейчас прочитали, изложено чрезмерно подробно и с массой уточнений. И не спроста. Сейчас мы сделаем такой фокус, заменим в предыдущем тексте некоторые слова формально таким образом:
куб -> гиперкуб
субкуб -> куб
плоскость -> объем
третьего -> четвертого
двумерной -> трехмерной
четырех -> шести
трехмерный -> четырехмерный
две -> три
плоскости -> пространстве

В результате получаем следующий осмысленный текст, который уже не кажется излишне подробным.

Чтобы построить гиперкуб из куба, надо протянуть куб в направлении перпендикулярном объему куба по направлению четвертого измерения. При этом из каждой стороны первоначального куба вырастет куб, который является боковой трехмерной гранью гиперкуба, которые ограничат с шести сторон четырехмерный объем гиперкуба, по три перпендикулярно каждому направлению в пространстве куба. И вдоль новой четвертой оси тоже имеются два куба, ограничивающие четырехмерный объем гиперкуба. Это та трехмерная грань, где первоначально находился наш куб и та трехмерная грань гиперкуба, куда куб пришел под конец строительства гиперкуба.

Почему у нас такая уверенность, что мы получили правильное описание построения гиперкуба? Да потому что точно такой же формальной заменой слов мы получаем описание построения куба из описания построения квадрата. (Проверьте это сами.)

Вот теперь понятно, что если из каждой стороны куба должен вырасти еще один трехмерный куб, то значит, из каждого ребра начального куба должна вырасти грань. Всего у куба ребер 12, значит, появится дополнительно 12 новых граней (субкубов) у тех 6 кубов, которые ограничивают четырехмерный объем по трем осям трехмерного пространства. И остались еще два куба, которые ограничивают этот четырехмерный объем снизу и сверху вдоль четвертой оси. В каждом из этих кубов есть по 6 граней.

Итого получаем, что гиперкуб имеет 12+6+6=24 квадратных граней.

На следующей картинке показано логическое строение гиперкуба. Это как бы проекция гиперкуба на трехмерное пространство. При этом получается трехмерный каркас из ребер. На рисунке, естественно, Вы видите проекцию этого каркаса еще и на плоскость.



На этом каркасе внутренний куб это как бы начальный куб, с которого началось построение и который ограничивает четырехмерный объем гиперкуба по четвертой оси снизу. Мы этот начальный куб протягиваем вверх вдоль четвертой оси измерения и он переходит во внешний куб. Итак внешний и внутренний кубы из этого рисунка ограничивают гиперкуб по четвертой оси измерения.

А между этими двумя кубами видно еще 6 новых кубов, которые соприкасаются общими гранями с первыми двумя. Эти шесть кубов ограничивают наш гиперкуб по трем осям трехмерного пространства. Как видите, они соприкасаются не только с первыми двумя кубами, которые на этом трехмерном каркасе внутренний и внешний, но они еще соприкасаются друг с другом.

Можно прямо на рисунке посчитать и убедиться, что у гиперкуба действительно 24 грани. Но вот возникает такой вопрос. Этот каркас гиперкуба в трехмерном пространстве заполнен восемью трехмерными кубами без всяких просветов. Чтобы из этой трехмерной проекции гиперкуба сделать настоящий гиперкуб, надо вывернуть этот каркас наизнанку так, чтобы все 8 кубов ограничивали 4-мерный объем.

Делается это так. Приглашаем в гости жителя четырехмерного пространства и просим его помочь нам. Он хватает внутренний куб этого каркаса и сдвигает его в направлении четвертого измерения, которое перпендикулярно нашему трехмерному пространству. Мы в нашем трехмерном пространстве воспринимаем это так, как будто бы весь внутренний каркас исчез и остался только каркас внешнего куба.

Далее наш четырехмерный помощник предлагает свою помощь в роддомах по безболезненным родам, но наших беременных женщин пугает перспектива того, что младенец просто исчезнет из живота и окажется в параллельном трехмерном пространстве. Поэтому четырехмерцу вежливо отказывают.

А мы озадачиваемся вопросом, не расклеились ли некоторые из наших кубов при выворачивании каркаса гиперкуба наизнанку. Ведь если какие-то трехмерные кубы, окружающие гиперкуб, соприкасаются своими гранями с соседями на каркасе, то будут ли они также соприкасаться этими же гранями, если четырехмерец вывернет каркас наизнанку.

Опять обратимся к аналогии с пространствами меньшей размерности. Сравните изображение каркаса гиперкуба с проекцией трехмерного куба на плоскость, показанную на следующей картинке.



Жители двумерного пространства построили на плоскости каркас проекции куба на плоскость и пригласили нас, трехмерных жителей, выворачивать этот каркас наизнанку. Мы берем четыре вершины внутреннего квадрата и сдвигаем их перпендикулярно плоскости. Двумерные жители при этом видят полное исчезновение всего внутреннего каркаса, и у них остается только каркас внешнего квадрата. При такой операции все квадраты, которые соприкасались своими ребрами, продолжают по-прежнему соприкасаться теми же самыми ребрами.

Поэтому мы надеемся, что и логическая схема гиперкуба также не будет нарушена при выворачивании каркаса гиперкуба наизнанку, а число квадратных граней гиперкуба при этом не увеличится и будет по-прежнему равно 24. Это, конечно же, никакое не доказательство, а чисто догадка по аналогии.

После всего прочитанного здесь, Вы уже без труда сможете нарисовать логические каркасы пятимерного куба и подсчитать, какое у него число вершин, ребер, граней, кубов и гиперкубов. Это совсем не трудно.

Вселенная четырех измерений, или четырех координат, так же неудовлетворительна, как трех. Можно сказать, что мы не обладаем всеми данными, необходимыми для построения вселенной, поскольку ни три координаты старой физики, ни четыре координаты новой не достаточны для описания, всего многообразия явлений во вселенной.

Рассмотрим по порядку «кубы» различных размерностей.

Одномерным кубом на прямой является отрезок. Двумерным - квадрат. Граница квадрата состоит из четырех точек - вершин и четырех отрезков - ребер. Таким образом, квадрат имеет на границе элементы двух типов: точки и отрезки. Граница трехмерного куба содержит элементы трех типов: вершины - их 8, ребра (отрезки) -их 12 и грани (квадраты) -их 6. Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба.

В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Размерность куба

Размерность границы

2 квадрат

4 тессеракт

Координаты в четырехмерном пространстве.

Точка прямой определяется как число, точка плоскости как пара чисел, точка трехмерного пространства как тройка чисел. Поэтому совершенно естественно построить геометрию четырехмерного пространства, определив точку этого воображаемого пространства как четверку чисел.

Двумерной гранью четырехмерного куба называется множество точек, для которых две какие-нибудь координаты могут принимать всевозможные значения от 0 до 1, а две другие постоянны (равны либо 0, либо 1).

Трехмерной гранью четырехмерного куба называется множество точек, у которых три координаты принимают все возможные значения от 0 до 1, а одна постоянна (равна либо 0, либо 1).

Развертки кубов различных размерностей.

Берем отрезок, со всех сторон поместим по отрезку, и еще один прикрепим к любому, в данном случае к правому отрезку.

Получили развертку квадрата.

Берем квадрат, со всех сторон поместим по квадрату, еще один прикрепим к любому, в данном случае к нижнему квадрату.

Это развертка трехмерного куба.

Четырехмерный куб

Берем куб, со всех сторон поместим по кубу, еще один прикрепим к любому, в данном нижнему кубу.

Развертка четырехмерного куба

Представим себе, что четырёхмерный куб сделан из проволоки и в вершине (1;1;1;1) сидит муравей, тогда из одной вершины в другую муравью придется ползти по ребрам.

Вопрос: по скольким ребрам ему придется ползти, чтобы попасть в вершину (0;0;0;0)?

По 4 ребрам, то есть вершину (0;0;0;0) - вершина 4 порядка, пройдя по 1 ребру он может попасть в вершину, имеющую одну из координат 0, это вершина 1 порядка, пройдя по 2 ребрам он может попасть в вершины где 2 нуля, это вершины 2 порядка, таких вершин 6, пройдя по 3 ребрам, он попадет в вершины у которых 3 координаты нуль, это вершины третьего порядка.

Существуют и другие кубы в многомерном пространстве. Кроме тессеракта можно построить кубы с большим числом измерений. Моделью пятимерного куба является пентеракт.Пентеракт имеет 32 вершины,80 рёбер, 80 граней, 40 кубов и 10 тессерактов.

Художники, режиссеры, скульпторы, ученые по-разному представляют многомерный куб. Приведем некоторые примеры:

Многие писатели-фантасты описывают в своих произведениях тессеракт. Например, Роберт Энсон Хайнлайн (1907–1988) упоминал гиперкубы в, по крайней мере, трех из его научно-популярных рассказов. В «Дом четырех измерений» он описал дом, построенный как развертка тессеракта.

Сюжет фильма «Куб-2» сосредотачивается на восьми незнакомцах, пойманных в ловушку в гиперкубе.

« Распятие» Сальвадора Дали 1954(1951) год. Сюрреализм Дали искал точек соприкосновения нашей реальности и потустороннего, в частности, 4–мерного мира. Поэтому, с одной стороны, поразительно, а, с другой, ничего удивительного в том, что геометрическая фигура из кубиков, образующая христианский крест, является изображением 3–мерной развертки 4–мерного куба или тессеракта .

21 октября на математическом факультете Университета штата Пенсильвания состоялось открытие необычной скульптуры под названием «Октакуб». Она представляет собой изображение четырехмерного геометрического объекта в трехмерном пространстве. По мнению автора скульптуры, профессора Адриана Окнеану, столь красивой фигуры такого рода в мире не существовало, ни виртуально, ни физически, хотя трехмерные проекции четырехмерных фигур изготавливались и раньше.

Вообще математики легко оперируют с четырех-, пяти– и еще более многомерными объектами, однако изобразить их в трехмерном пространстве невозможно. «Октакуб», как и все подобные фигуры не является действительно четырехмерным. Его можно сравнить с картой - проекцией трехмерной поверхности земного шара на плоский лист бумаги.

Трехмерная проекция четырехмерной фигуры была получена Окнеану методом радиальной стереографии при помощи компьютера. При этом была сохранена симметрия исходной четырехмерной фигуры. Скульптура имеет 24 вершины и 96 граней. В четырехмерным пространстве грани фигуры прямые, но в проекции они искривлены. Углы же между гранями у трхмерной проекции и исходной фигуры одинаковы.

«Октакуб» был изготовлен из нержавеющей стали в инженерных мастерских Университета штата Пенсильвания. Установлена скульптура в отремонтированном корпусе имени Макаллистера математического факультета.

Многомерное пространство интересовало многих ученых, таких как Рене Декарт, Герман Минковский. В наши дни идет преумножение знаний по данной теме. Это помогает математикам, исследователям и изобретателям современности в достижении их целей и развитию науки. Шаг в многомерное пространство - это шаг в новую более развитую эру человечества.



gastroguru © 2017