Распространение звука в воде. Где быстрее распространяется звук Распространение звука в жидкостях

Если звуковая волна не встречает препятствий на своём пути, она распространяется равномерно по всем направлениям. Но и не всякое препятствие становится преградой для неё.

Встретив препятствие на своём пути, звук может огибать его, отражаться, преломляться или поглощаться.

Дифракция звука

Мы можем разговаривать с человеком, стоящим за углом здания, за деревом или за забором, хотя и не видим его. Мы слышим его, потому что звук способен огибать эти предметы и приникать в область, находящуюся за ними.

Способность волны огибать препятствие называется дифракцией .

Дифракция возможна, когда длина звуковой волны превышает размер препятствия. Звуковые волны низкой частоты имеют довольно большую длину. Например, при частоте 100 Гц она равна 3,37 м. С уменьшением частоты длина становится ещё больше. Поэтому звуковая волна с лёгкостью огибает объекты, соизмеримые с ней. Деревья в парке совершенно не мешают нам слышать звук, потому что диаметры их стволов значительно меньше длины звуковой волны.

Благодаря дифракции, звуковые волны проникают через щели и отверстия в препятствии и распространяются за ними.

Расположим на пути звуковой волны плоский экран с отверстием.

В случае, когда длина звуковой волны ƛ намного превышает диаметр отверстия D , или эти величины примерно равны, то позади отверстия звук достигнет всех точек области, которая находится за экраном (область звуковой тени). Фронт выходящей волны будет выглядеть как полусфера.

Если же ƛ лишь немного меньше диаметра щели, то основная часть волны распространяется прямо, а небольшая часть незначительно расходится в стороны. А в случае, когда ƛ намного меньше D , вся волна пойдёт в прямом направлении.

Отражение звука

В случае попадания звуковой волны на границу раздела двух сред, возможны разные варианты её дальнейшего распространения. Звук может отразиться от поверхности раздела, может перейти в другую среду без изменения направления, а может преломиться, то есть перейти, изменив своё направление.

Предположим, на пути звуковой волны появилось препятствие, размер которого намного больше длины волны, например, отвесная скала. Как поведёт себя звук? Так как обогнуть это препятствие он не может, то он отразится от него. За препятствием находится зона акустической тени .

Отражённый от препятствия звук называется эхом .

Характер отражения звуковой волны может быть разным. Он зависит от формы отражающей поверхности.

Отражением называют изменение направления звуковой волны на границе раздела двух разных сред. При отражении волна возвращается в среду, из которой она пришла.

Если поверхность плоская, звук отражается от неё подобно тому, как отражается луч света в зеркале.

Отражённые от вогнутой поверхности звуковые лучи фокусируются в одной точке.

Выпуклая поверхность звук рассеивает.

Эффект рассеивания дают выпуклые колонны, крупные лепные украшения, люстры и т.д.

Звук не переходит из одной среды в другую, а отражается от неё, если плотности сред значительно отличаются. Так, звук, появившийся в воде, не переходит в воздух. Отражаясь от границы раздела, он остаётся в воде. Человек, стоящий на берегу реки, не услышит этот звук. Это объясняется большой разницей волновых сопротивлений воды и воздуха. В акустике волновое сопротивление равно произведению плотности среды на скорость звука в ней. Так как волновое сопротивление газов значительно меньше волновых сопротивлений жидкостей и твёрдых тел, то попадая на границу воздуха и воды, звуковая волна отражается.

Рыбы в воде не слышат звук, появляющийся над поверхностью воды, но хорошо различают звук, источником которого является тело, вибрирующее в воде.

Преломление звука

Изменение направления распространения звука называется преломлением . Это явление возникает, когда звук переходит из одной среды в другую, и скорости его распространения в этих средах различны.

Отношение синуса угла падения к синусу угла отражения равно отношению скоростей распространения звука в средах.

где i – угол падения,

r – угол отражения,

v 1 – скорость распространения звука в первой среде,

v 2 – скорость распространения звука во второй среде,

n – показатель преломления.

Преломление звука называют рефракцией .

Если звуковая волна падает не перпендикулярно поверхности, а под углом, отличным от 90 о, то преломлённая волна отклонится от направления падающей волны.

Рефракция звука может наблюдаться не только на границе раздела сред. Звуковые волны могут менять своё направление в неоднородной среде – атмосфере, океане.

В атмосфере причиной рефракции служат изменения температуры воздуха, скорость и направление перемещения воздушных масс. А в океане она появляется из-за неоднородности свойств воды – разного гидростатического давления на разных глубинах, разной температуры и разной солёности.

Поглощение звука

При встрече звуковой волны с поверхностью, часть её энергии поглощается. А какое количество энергии может поглотить среда, можно определить, зная коэффициент поглощения звука. Этот коэффициент показывает, какую часть энергии звуковых колебаний поглощает 1 м 2 препятствия. Он имеет значение от 0 до 1.

Единицу измерения звукопоглощения называют сэбин . Своё название она получила по имени американского физика Уоллеса Клемента Сэбина, основателя архитектурной акустики. 1 сэбин – это энергия, которую поглощает 1 м 2 поверхности, коэффициент поглощения которой равен 1. То есть, такая поверхность должна поглощать абсолютно всю энергию звуковой волны.

Реверберация

Уоллес Сэбин

Свойство материалов поглощать звук широко используют в архитектуре. Занимаясь исследованием акустики Лекционного зала, части построенного Fogg Museum, Уоллес Клемент Сэбин пришёл к выводу, что существует зависимость между размерами зала, акустическими условиями, типом и площадью звукопоглощающих материалов и временем реверберации .

Реверберацией называют процесс отражения звуковой волны от препятствий и её постепенное затухание после выключения источника звука. В закрытом помещении звук может многократно отражаться от стен и предметов. В результате возникают различные эхосигналы, каждый из которых звучит как бы обособленно. Этот эффект называют эффектом реверберации .

Самой важной характеристикой помещения является время реверберации , которое ввёл и вычислил Сэбин.

где V – объём помещения,

А – общее звукопоглощение.

где a i – коэффициент звукопоглощения материала,

S i - площадь каждой поверхности.

Если время реверберации велико, звуки словно "бродят" по залу. Они накладываются друг на друга, заглушают основной источник звука, и зал становится гулким. При маленьком времени реверберации стены быстро поглощают звуки, и они становятся глухими. Поэтому для каждого помещения должен быть свой точный расчёт.

По результатам своих вычислений Сэбин расположил звукопоглощающие материалы таким образом, что уменьшился «эффект эха». А Симфонический Зал Бостона, при создании которого он был акустическим консультантом, до сих пор считается одним из лучших залов в мире.

.

Звук распространяется в воде в пять раз быстрее, чем в воздухе. Средняя скорость равняется 1400 - 1500 м/сек (скорость распространения звука в воздухе 340 м/сек). Казалось бы, что слышимость в воде также улучшается. На самом деле это далеко не так. Ведь сила звука зависит не от скорости распространения, а от амплитуды звуковых колебаний и воспринимающей способности органов слуха. В улитке внутреннего уха расположен кортиев орган, состоящий из слуховых клеток. Звуковые волны колеблят барабанную перепонку, слуховые косточки и мембрану кортиевого органа. От волосяных клеток последнего, воспринимающих звуковые колебания, нервное возбуждение идет в слуховой центр, расположенный в височной доли головного мозга.

Звуковая волна может попасть во внутреннее ухо человека двумя путями: воздушной проводимостью через наружный слуховой проход, барабанную перепонку и слуховые косточки среднего уха и посредством костной проводимости - вибрации костей черепа. На поверхности преобладает воздушная, а под водой костная проводимость. В этом убеждает простой опыт. Закройте ладонями рук оба уха. На поверхности слышимость резко ухудшится, под водой же этого не отмечается.

Итак, под водой звуки воспринимаются преимущественно путем костной проводимости. Теоретически это объясняется тем, что акустическое сопротивление воды приближается к акустическому сопротивлению тканей человека. Поэтому потери энергии при переходе звуковых волн из воды в кости головы человека меньше, чем в воздухе. Воздушная же проводимость под водой почти исчезает, так как наружный слуховой проход заполнен водой, а небольшая прослойка воздуха возле барабанной перепонки слабо передает звуковые колебания.

Опытами установлено, что костная проводимость на 40% ниже воздушной. Поэтому слышимость под водой в общем ухудшается. Дальность слышимости при костной проводимости звука зависит не столько от силы, сколько от тональности: чем выше тон, тем дальше слышен звук.

Подводный мир для человека - это мир тишины, где отсутствуют посторонние шумы. Поэтому простейшие звуковые сигналы могут восприниматься под водой на значительных расстояниях. Человек слышит удар по металлическому баллончику, погруженному в воду, на расстоянии 150-200 м, звук трещотки-на 100 м, колокольчика - на 60 м.

Звуки, издаваемые под водой, обычно не слышны на поверхности, так же как под водой не слышно звуков извне. Для восприятия подводных звуков необходимо хотя бы частично погрузиться. Если войти в воду по колени, начинаешь воспринимать звук, который до этого не был слышен. По мере погружения громкость увеличивается. Особенно хорошо слышно при погружении головы.

Для подачи звуковых сигналов с поверхности обязательно нужно опустить источник звука в воду хотя бы наполовину, и сила звука изменится. Ориентировка под водой по слуху крайне затруднена. В воздушной среде звук приходит в одно ухо раньше на 0,00003 сек., чем в другое. Это позволяет определить нахождение источника звука с ошибкой всего в 1-3°. Под водой же звук одновременно воспринимается обоими ушами и поэтому четкого, направленного восприятия не происходит. Ошибка в ориентировке бывает 180°.

В специально поставленном опыте только отдельные легкие водолазы после долгих блужданий и. поисков выходили к месту расположения источника звука, находившегося от них в 100-150 м. Отмечено, что систематические тренировки в течение длительного времени позволяют выработать способность довольно точно ориентироваться по звуку под водой. Однако как только тренировка прекращается, ее результаты сводятся на нет.

Мы воспринимаем звуки, находясь на расстоянии от их источников. Обычно звук доходит до нас по воздуху. Воздух является упругой средой, передающей звук.

Если между источником и приёмником удалить звукопередающую среду, то звук распространяться не будет и, следовательно, приёмник не воспримет его. Продемонстрируем это на опыте.

Поместим под колокол воздушного насоса часы-будильник (рис. 80). Пока в колоколе находится воздух, звук звонка слышен ясно. При откачивании воздуха из-под колокола звук постепенно слабеет и, наконец, становится неслышимым. Без передающей среды колебания тарелки звонка не могут распространяться, и звук не доходит до нашего уха. Впустим под колокол воздух и снова услышим звон.

Рис. 80. Опыт, доказывающий, что в пространстве, где нет вещественной среды, звук не распространяется

Хорошо проводят звуки упругие вещества, например металлы, древесина, жидкости, газы.

Положим на один конец деревянной доски карманные часы, а сами отойдём к другому концу. Приложив ухо к доске, услышим ход часов.

Привяжем к металлической ложке бечёвку. Конец бечёвки приложим к уху. Ударяя по ложке, услышим сильный звук. Ещё более сильный звук услышим, если бечёвку заменим проволокой.

Мягкие и пористые тела - плохие проводники звука. Чтобы защитить какое-нибудь помещение от проникновения посторонних звуков, стены, пол и потолок прокладывают прослойками из звукопоглощающих материалов. В качестве прослоек используют войлок, прессованную пробку, пористые камни, различные синтетические материалы (например, пенопласт), изготовленные на основе вспененных полимеров. Звук в таких прослойках быстро затухает.

Жидкости хорошо проводят звук. Рыбы, например, хорошо слышат шаги и голоса на берегу, это известно опытным рыболовам.

Итак, звук распространяется в любой упругой среде - твёрдой, жидкой и газообразной, но не может распространяться в пространстве, где нет вещества.

Колебания источника создают в окружающей его среде упругую волну звуковой частоты. Волна, достигая уха, воздействует на барабанную перепонку, заставляя её колебаться с частотой, соответствующей частоте источника звука. Дрожания барабанной перепонки передаются посредством системы косточек окончаниям слухового нерва, раздражают их и тем вызывают ощущение звука.

Напомним, что в газах и жидкостях могут существовать только продольные упругие волны. Звук в воздухе, например, передаётся продольными волнами, т. е. чередующимися сгущениями и разрежениями воздуха, идущими от источника звука.

Звуковая волна, как и любые другие механические волны, распространяется в пространстве не мгновенно, а с определённой скоростью. В этом можно убедиться, например, наблюдая издалека за стрельбой из ружья. Сначала видим огонь и дым, а потом через некоторое время слышим звук выстрела. Дым появляется в то же время, когда происходит первое звуковое колебание. Измерив промежуток времени t между моментом возникновения звука (момент появления дыма) и моментом, когда он доходит до уха, можно определить скорость распространения звука:

Измерения показывают, что скорость звука в воздухе при 0 °С и нормальном атмосферном давлении равна 332 м/с.

Скорость звука в газах тем больше, чем выше их температура. Например, при 20 °С скорость звука в воздухе равна 343 м/с, при 60 °С - 366 м/с, при 100 °С - 387 м/с. Объясняется это тем, что с повышением температуры возрастает упругость газов, а чем больше упругие силы, возникающие в среде при её деформации, тем больше подвижность частиц и тем быстрее передаются колебания от одной точки к другой.

Скорость звука зависит также от свойств среды, в которой распространяется звук. Например, при 0 °С скорость звука в водороде равна 1284 м/с, а в углекислом газе - 259 м/с, так как молекулы водорода менее массивны и менее инертны.

В настоящее время скорость звука может быть измерена в любой среде.

Молекулы в жидкостях и твёрдых телах расположены ближе друг к другу и сильнее взаимодействуют, чем молекулы газов. Поэтому скорость звука в жидких и твёрдых средах больше, чем в газообразных.

Поскольку звук - это волна, то для определения скорости звука, помимо формулы V = s/t, можно пользоваться известными вам формулами: V = λ/T и V = vλ. При решении задач скорость звука в воздухе обычно считают равной 340 м/с.

Вопросы

  1. С какой целью ставят опыт, изображённый на рисунке 80? Опишите, как этот опыт проводится и какой вывод из него следует.
  2. Может ли звук распространяться в газах, жидкостях, твёрдых телах? Ответы подтвердите примерами.
  3. Какие тела лучше проводят звук - упругие или пористые? Приведите примеры упругих и пористых тел.
  4. Какую волну - продольную или поперечную - представляет собой звук, распространяющийся в воздухе; в воде?
  5. Приведите пример, показывающий, что звуковая волна распространяется не мгновенно, а с определённой скоростью.

Упражнение 30

  1. Может ли звук сильного взрыва на Луне быть слышен на Земле? Ответ обоснуйте.
  2. Если к каждому из концов нити привязать по одной половинке мыльницы, то с помощью такого телефона можно переговариваться даже шёпотом, находясь в разных комнатах. Объясните явление.
  3. Определите скорость звука в воде, если источник, колеблющийся с периодом 0,002 с, возбуждает в воде волны длиной 2,9 м.
  4. Определите длину звуковой волны частотой 725 Гц в воздухе, в воде и в стекле.
  5. По одному концу длинной металлической трубы один раз ударили молотком. Будет ли звук от удара распространяться ко второму концу трубы по металлу; по воздуху внутри трубы? Сколько ударов услышит человек, стоящий у другого конца трубы?
  6. Наблюдатель, стоящий около прямолинейного участка железной дороги, увидел пар над свистком идущего вдали паровоза. Через 2 с после появления пара он услышал звук свистка, а через 34 с паровоз прошёл мимо наблюдателя. Определите скорость движения паровоза.

>>Физика: Звук в различных средах

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах . Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.

Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях . Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.


На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах . Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

1. Почему во время грозы мы сначала видим молнию и лишь потом слышим гром? 2. От чего зависит скорость звука в газах? 3. Почему человек, стоящий на берегу реки, не слышит звуков, возникающих под водой? 4. Почему "слухачами", которые в древние времена следили за земляными работами противника, часто были слепые люди?

Экспериментальное задание . Положив на один конец доски (или длинной деревянной линейки) наручные часы, приложите ухо к другому ее концу. Что вы слышите? Объясните явление.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Планирование физики, планы конспектов уроков физики, школьная программа, учебники и книги по физике 8 класс, курсы и задание по физике для 8 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Где звук распространяется быстрее: в воздухе или в воде??? и получил лучший ответ

Ответ от Ptishon[гуру]
Скорость звукаСкорость звука в газах (0° С; 101325 Па), м/с Азот 334 Аммиак 415 Ацетилен 327 Водород 1284 Воздух 331,46 Гелий 965 Кислород 316 Метан 430 Угарный газ 338 Углекислый газ 259 Хлор 206 Скорость звука - скорость распространения звуковых волн в среде.В газах скорость звука меньше, чем в жидкостях.В жидкостях скорость звука меньше, чем в твёрдых телах.В воздухе при нормальных условиях скорость звука составляет 331.46 м/с (1193 км/ч).В воде скорость звука составляет 1485 м/с.В твёрдых телах скорость звука составляет 2000-6000 м/с.

Ответ от White Rabbit [гуру]
В воде.В воздухе скорость звука при 25оС около 330 м/cа в воде около 1500 м/сТочное значение зависит от температуры, давления, солёности (для воды) и влажности (для воздуха)


Ответ от BaNkS777 [эксперт]
в воде....


Ответ от АнДи [гуру]
а ты что звуковую бомбу создать хочешь?вот физико-ядерщиков понавелосьФ)))


Ответ от Владимир Т [гуру]
в воде, где плотность больше там и быстрее (молекули ближе и передача быстрее)


Ответ от Полина Лыкова [активный]
Наверное в воздухе (точно не знаю).Так как в воде все движения замдляются, то и звук не так быстро распрастраняется!Ну проверь! Хлопни в ладоши под водой. Это будет сделанно медленее, чем в воздухе.Мой опыт =) =8 =(=*8 =Р


Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Где звук распространяется быстрее: в воздухе или в воде???



gastroguru © 2017