Типы гемопоэза. Важность процесса гемопоэза и схема гемопоэза в жизни человека

КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Кроветворение (гемопоэз) – процесс образования крови. Выделяют эмбриональный и постэмбриональный гемопоэз.

Эмбриональный гемопоэз – это процесс образования крови как ткани.

Постэмбриональный гемопоэз – процесс образования форменных элементов крови в ходе физиологической и репаративной регенерации.

Согласно унитарной теории кроветворения, все клетки крови развиваются из одной родоначальной стволовой кроветворной клетки (СКК).

Эмбриональный гемопоэз делится на три периода в зависимости от времени и места протекания. Это периоды в определенной степени перекрываются:

мегалобластический (внезародышевый) период - 1-2-й месяцы эмбриогенеза;

гепато-тимо-лиенальный период - 2-5-й месяцы эмбриогенеза;

медулло-тимо-лимфатический период – 5-9-й месяцы эмбриогенеза.

Мегалобластический период начинается со 2-3 недели внутриутробной жизни в мезенхиме желточного мешка.

В результате интенсивного деления клеток в мезенхиме образуются кровяные островки, клетки которых дифференцируются в двух направлениях:

ангиобласты , лежащие по периферии, превращаются в эндотелий и образуют стенки первичных кровеносных сосудов;

стволовые кроветворные клетки , которые лежат в центре островков, превращаются в первичные клетки крови – бласты .

Большая часть бластов делится и превращается в первичные эритробласты больших размеров – мегалобласты . Мегалобласты активно делятся и начинают синтезировать и накапливать эмбриональные гемоглобины. Из оксифильных мегалобластов образуются эритроциты больших размеров – мегалоциты . Часть мегалоцитов содержат ядро, часть – является безъядерными. Процесс образования мегалоцитов называется мегалобластическим эритропоэзом . Кроме мегалоцитов в желточном мешке образуется некоторое количество безъядерных эритроцитов обычного размера - нормобластический эритропоэз . Образование эритроцитов в желточном мешке идёт внутри кровеносных сосудов – интраваскулярно.

Одновременно с эритропоэзом в желточном мешке экстраваскулярно – вне просвета сосудов - идёт гранулоцитопоэз – образуются нейтрофильные и эозинофильные гранулоциты.

После образования кровеносных сосудов в теле зародыша и соединения их с сосудами желточного мешка эти клетки попадают в другие органы, участвующие в эмбриональном гемопоэзе. В дальнейшем желточный мешок постепенно редуцируется, и к 12-й неделе эмбриогенеза кроветворение в нём полностью прекращается

В печени кроветворение начинается на 5-6 нед. развития. Здесь образуются эритроциты, гранулоциты и тромбоциты. К концу 5-го месяца интенсивность гемопоэза в печени уменьшается, но в небольшой степени продолжается ещё несколько недель после рождения.

Гемопоэз в селезёнке наиболее выражен с 4-го по 8-й месяцы внутриутробного развития.

Начиная с 5-го месяца, красный костный мозг постепенно становится универсальным органом кроветворения , и происходит разделение на миелопоэз (образование всех видов форменных элементов крови за исключением лимфоцитов) и лимфопоэз.

Постэмбриональный гемопоэз – процесс образования форменных элементов крови в ходе физиологической и репаративной регенерации после рождения. Обновление различных клеточных популяций крови необходимо, поскольку абсолютное большинство форменных элементов крови имеет короткий жизненный цикл (скорость распада эритроцитов, например, составляет 10 млн в секунду). Гемопоэз обеспечивает поддержание постоянного количества форменных элементов в периферической крови.

Постэмбриональный гемопоэз протекает в миелоидной (красный костный мозг) и лимфоидных (тимус, селезенка, лимфоузлы, миндалины, аппендикс, лимфатические фолликулы) тканях.

Современные представления о кроветворении основаны на признании унитарной теории кроветворения. Согласно этой теории, развитие всех клеток крови начинается со стволовой клетки крови(СКК), дифференцировка которой в различные форменные элементы определяется микроокружением и действием специфических веществ – гемопоэтинов .

Во взрослом организме человека СКК в норме локализованы в костном мозге (0,05% от всех клеток костного мозга), однако в низких концентрациях они присутствуют также в периферической крови (0,0001% от всех лимфоцитов). Богатым источником СКК является пуповинная кровь и плацента.

СКК дают начало прогениторным клеткам и клеткам-предшественникам, которые делятся и дифференцируются в зрелые клетки определенного типа ткани. Такие клетки называют еще коммитированными.

Клетки предшественники образуют дифференцированные клетки через ряд поколений промежуточных клеток, становящихся все более зрелыми. Таким образом, гемопоэтические клетки подразделяются на 6 классов , в зависимости от уровня дифференцировки.

КЛАСС I. - СТВОЛОВАЯ ГЕМОПОЭТИЧЕСКАЯ КЛЕТКА (СКК)

СВОЙСТВА СКК:

· плюрипотентность : СКК способна к дифференцировке в различных направлениях и даёт начало любому виду форменных элементов крови (эритроцитам, лейкоцитам, кровяным пластинкам), поэтому СКК называют родоначальными клетками .

· способность к самоподдержанию : СККспособны поддерживать постоянство численности своей популяции за счёт того, что после деления стволовой клетки одна из дочерних клеток остается стволовой, сохраняя все свойства родительской клетки; вторая дочерняя клетка дифференцируется в полустволовую (коммитированную) стволовую клетку. Такой митоз называется асимметричным.

· способность к делению (пролиферации). СКК – долгоживущая клетка ; срок её жизни - жизнь индивидуального организма.

· устойчивость к действию повреждающих факторов , вероятно вследствие того, что СКК делятся редко; большую часть своей жизни они пребывают в состоянии покоя; при необходимости могут вновь вступать в клеточный цикл (например, при значительных кровопотерях и при воздействии факторов роста); кроме того СКК защищены своим местоположением.

· морфологически СКК не идентифицируются: то есть их нельзя различить обычными методами под световым или электронным микроскопом, СКК выглядит как любой малый лимфоцит, но они имеют свой фенотип (антигенный профиль): для них характерно присутствие на поверхности маркеров CD34+,CD59+, Thy1/CD90+, CD38lo/-, C-kit/cd117+, и отсутствие ряда маркеров, свойственных зрелым клеткам крови (Lin-негативность); благодаря определенному фенотипу СКК можно выявить методами иммуноцитохимии (с помощью меченых моноклональных антител).

· основное место локализации СКК– красный костный мозг, хотя численность СКК невелика (1 СКК на 2000 клеток красного костного мозга; или 1 СКК на 1 000 000 лейкоцитов периферической крови).

Гемоцитопоэз

Гемоцитопоэз процесс образования форменных элементов крови. Различают два вида кроветворения: миелоидное и лимфоидное.

В свою очередь миелоидное кроветворение подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз, тромбоцитопоэз.

В гемопоэзе различают два периода: эмбриональный и постэмбриональный.

Эмбриональный период представляет собой гистогенез и приводит к образованию крови как ткани. Осуществляется в эмбриогенезе поэтапно, в нем различаются три основные этапа:

Желточный (мезобластический);

Печеночный

Медуллярный (костно-мозговой)

Желточный этап.

В мезенхиме желточного мешка образуются «кровяные островки», представляющие собой очаговые скопления мезенхимных клеток. Затем происходит дивергентная дифференцировка этих клеток.

Периферические клетки образуют эндотелиальную выстилку сосуда. Центральные клетки округляются, превращаясь в стволовые кроветворные клетки. Их этих клеток в сосудах, т.е. интраваскулярно начинается процесс образования первичных эритроцитов. Они отличаются большими, чем у нормоцитов размерами, наличием ядра и содержанием особого вида гемоглобина – HbP (эмбрионального). Такой тип кроветворения называется мегалобластическим.

Часть стволовых клеток оказывается вне сосудов и из них начинают развиваться зернистые лейкоциты, которые затем мигрируют в сосуды.

Важнейшим итогом этого этапа является образование стволовых клеток крови I-й генерации.

Второй этап – печеночный - начинается на 5-й неделе эмбриогенеза в печени, экстраваскулярно – по ходу капилляров, врастающих с мезенхимой внутрь печени. В печени активно развиваются стволовые клетки II-й генерации и из них образуются эритроциты и гранулоциты до конца 5-го месяца, затем процесс гемоцитопоэза там постепенно снижается. Тимус начинает заселяться стволовыми клетками с 7-8 недели, дает начало Т-лимфоцитам.

Селезенка заселяется стволовыми клетками на 7-8 неделе и в ней экстраваскулярно начинается универсальное кроветворение, т.е. происходит и миело- и лимфоцитопоэз..

Третий период эмбрионального кроветворениямедулло-тимусо-лиенальный . Закладка красного костного мозга начинается со 2-го месяца эмбриогенеза. Кроветворение в нём начинается с 4-го месяца закладкой стволовых клеток III-й генерации, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т.е. осуществляется универсальный гемоцитопоэз.

Постнатальный период кроветворения.

Постэмбриональное кроветворение является физиологической регенерацией и восполняет естественную убыль форменных элементов крови.

В настоящее время принята унитарная теория кроветворения, на основе которой И.Л. Чертковым и А.И. Воробьевым разработана принятая в настоящее время схема кроветворения.


Согласно этой схеме существует два вида кроветворения: миелоидное и лимфоидное.

Миелопоэз в свою очередь подразделяется на эритропоэз, гранулоцитопоэз, моноцитопоэз и тромбоцитопоэз.

Лимфоцитопоэз подразделяется на Т- и В-лимфоцитопоэз.

В процессе поэтапной дифференцировки стволовых клеток в форменные элементы крови в каждом ряду кроветворения образуются типы клеток, которые в совокупности образуют классы клеток.

Всего в схеме кроветворения различают 6 классов клеток:

I – стволовые клетки – полипотентные

II – полустволовые – коммитированные, мультипотентные

III- унипотентные -

IV- бластные – клетки предшественники

V - созревающие

VI- зрелые форменные элементы.

I класс – стволовые полипотентные клетки. Концентрация этих клеток очень редка 10–4– 10-5от общего числа клеток костного мозга.

Располагаются в местах, хорошо защищенных от внешних

воздействий и обладающих обильным кровоснабжением.

С возрастом число стволовых клеток не изменяется.

Способны к неограниченному самоподдержанию своей популяции.

По морфологии соответствуют малому лимфоциту,

Стволовые клетки крови устойчивы к действию повреждающих факторов, в том числе и радиации.

Поддержание численности популяции происходит с помощью симметричных (некоммитирующих) митозов.

Стволовые клетки делятся редко.

Способны циркулировать в кровь, мигрируя в другие кроветворные органы.

II класс – полустволовые , ограниченно полипотентные (или частично коммитированные) клетки бывают двух типов:

Предшественники миелопоэза

Предшественники лимфопоэза

Каждая из них также образует колонию, т.е. клон клеток, но либо миелоидных, либо лимфоидных. В последнее время среди полустволовых клеток миелопоэза выделены 3 типа клеток: КОЕ-ГМ (дающие начало моноцитам и гранулоцитам), КОЕ-ГнЭ (гранулоцитам и эритроцитам), КОЕ-МгцЭ (мегакариоцитам и эритроцитам). Все полустволовые клетки также как стволовые по морфологии являются лимфоцитоподобными и способны к ограниченному самоподдержанию.

III класс – унипотентные поэтинчувствительные клетки- предшественники своего ряда. По морфологии соответствуют малым лимфоцитам, способны давать колонии, состоящие только из одного типа форменных элементов.

Методом колониеобразования среди унипотентных клеток определены

КОЕ-М – предшественники моноцитов

КОЕ-Гн – нейтрофильных гранулоцитов

КОЕ-Эо – эозинофильных гранулоцитов

КОЕ-Б – базофильных гранулоцитов

КОЕ-Э – эритроцитов (её предшественник БОЕ-Э – бурст-образующая единица)

КОЕ-Мгц – мегакариоцитов.

Частота деления этих клеток и способность к дифференцировке зависит от содержания в крови особых биологически активных веществ – поэтинов, специфичных для каждого ряда кроветворения (эритропоэтины, тромбопоэтины и т.д.).

Первые три класса объединяются в класс морфологически не идентифицируемых клеток, имеющих морфологию малого лимфоцита.

IV класс – бластные клетки (эритробласты, лимфобласты, мегакариобласты, монобласты, миелобласты). Эти клетки имеют характерную морфологию – имеют крупные размеры, крупное, богатое преимущественно эухроматином ядро с 2-4 ядрышками. По цитохимическим свойствам можно идентифицировать бласты разных рядов кроветворения.

V класс – класс созревающих клеток , характерных для своего ряда кроветворения.

Эритроидный ряд.

Клетки эритропоэтического ряда - эритрон - составляют от 20 до 30% всех клеток костного мозга. За один час образуется 10 10 эритроцитов. Родоначальник – БОЕ-Э – (от англ бурст – взрыв), из неё образуется более дифференцированная КОЕ-Э, чувствительная к эритропоэтину.

Под влиянием эритропоэтина КОЕ-Э дифференцирутся, давая начало морфологически распознаваемым стадиям эритроидного ряда. Ими являются:

Делящиеся клетки проэритробласт

базофильный эритробласт

полихроматофильный эритробласт

Неделящиеся клетки оксифильный эритробласт

ретикулоцит

эритроцит

Процесс дифференцировки сопровождается уменьшением размеров клеток, снижением содержания и, в конечном итоге, утрата всех органоидов, конденсация ядра с последующим его удалением из клетки. Самым ярким признаком эритроидной дифференцировки является появление в цитоплазме гемоглобина. Синтез гемоглобина продолжается до конца стадии ретикулоцита. Длительность всех этапов эритропоэза около 7 суток.

В костном мозге эритробласты созревают в тесном контакте с макрофагами, образуя эритробластические островки. Находящиеся в этих островках макрофаги снабжают эритробласты железом.

Денуклеация (удаление ядра) происходит путем отделения от оксифильного эритробласта отростка, содержащего ядро. Выброшенное ядро окружено тонкой полоской цитоплазмы.

Специфическими факторами регуляции эритропоэза являются эритропоэтины, кейлоны. Эритропоэтин – продуцируется на 90% почкой, на 10% печенью и вырабатывается в ответ на гипоксию. Его действие усиливается неспецифическими факторами. К ним относят, например тестостерон, АКТГ, преднизолон, витамины В6 и В12.

Зрелые эритроциты, обладающие большой эластичностью за счет активного движения проходят сквозь цитоплазму эндотелиальных клеток, проникая через поры, образуемы только во время миграции.

Гранулоцитопоэз.

Гранулоцитопоэз – образование и дифференцировка гранулоцитов происходит в красном костном мозге.

Миелобласты и образующиеся после их коммитирующего митоза промиелоциты трех рядов (нейтрофильного, эозинофильного, базофильного) гранулоцитопоэза являются делящимися клетками и морфологически сходны. Это крупные клетки, содержащие округлое ядро. В цитоплазме накапливаются первичные азурофильные гранулы, относящиеся к лизосомам.

Следующие клетки развития: миелоциты, метамиелоциты, палочкоядерные и сегментоядерные гранулоциты характеризуются дивергентной дифференцировкой цитоплазмы.

В нейтрофильном ряду появляются нейтрофильные гранулы, в базофильном – базофильные, в эозинофильном – специфические оксифильные. Из этих клеток способны делиться только миелоциты. Одновременно происходит уменьшение размеров клеток, изменение формы ядра от округлой до сегментированной, в различной степени в перечисленных рядах, усиление конденсации хроматина. Кроме того, на плазмолемме появляются разнообразные рецепторы, подвижность клеток нарастает.

Развитие нейтрофилов от КОЕ-ГнМ до выхода в кровоток завершается за 13-14 сут. Эозинофилы и базофилы созревают быстрее. Гранулоциты остаются в костном мозге в течение 1-2 сут., образуя костно-мозговой пул (запас) зрелых клеток. Затем они выходят в кровь, где циркулируют несколько часов.

Моноцитопоэз

Унипотентный предшественник моноцита (КОЕ-М) превращается в монобласт. Далее различают промоноцит и моноцит .

Морфологически созревание выражается в изменении формы ядра от округлой до бобовидной, в увеличении относительного количества цитоплазмы и появлении в ней лизосом, уменьшении базофилии цитоплазмы. Моноциты не образуют резервного костно-мозгового пула, покидают костный мозг вскоре после образования. Затем несколько часов циркулирует в крови. После выселения в ткани они превращаются в макрофаги.

Развитие тромбоцитов.

Кровяные пластинки образуются в костном мозге из мегакариоцитов.

Унипотентный предшественник (КОЕ-МГЦ) превращается в мегакариобласт – крупную клетку (диаметр около 16 мкм) с лапчатым ядром, базофильной цитоплазмой. Они превращаются в промегакариоциты и затем мегакариоциты. Количество мегакариоцитов в клоне невелико (от 4 до 50). Это связано с тем, что предшественники не только делятся, но и полиплоидизируются.

Зрелый мегакариоцит образует пропластинчатые отростки (ленты), которые вытягиваются в просвет синусоида. От этих лент отшнуровываются фрагменты цитоплазмы, ограниченные мембранами, превращаясь в кровяные пластинки.

Цикл развития от стволовой клетки до тромбоцитов составляет около 10 сут. Тромбоцитопоэз регулируется КСФ-Мег и тромбопоэтином.

Лимфоцитопоэз.

В отличие от миелопоэза, лимфоцитопоэз осуществляется поэтапно, сменяя разные лимфоидные органы. И в Т- и в В-лимфоцитопоэзе выделяются 3 этапа:

1. Костномозговой этап. На этом этапе из стволовых клеток дифференцируются предшественники Т- и В-лимфоцитопоэза.

2. Этап антигеннезависимой дифференцировки, осуществляемый в центральных органах иммуногенеза. На этом этапе образуются лимфоциты, способные только распознавать антигены.

3. Этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах. Из клеток, способных распознать антиген формируются эффекторные клетки, способные уничтожить антиген.

Т-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге, где находятся принадлежащие к I классу стволовые клетки, II классу –полустволовые клетки лимфоцитопоэза и III классу – унипотентные Т-поэтинчувствительные клетки-предшественницы Т-лимфоцитопоэза – про-Т-лимфоциты (протимоциты). Клетки III класса мигрируют в кровяное русло и оседают в тимусе.

Второй этап – этап антигеннезависимой дифференцировки осуществляется в корковом веществе тимуса. Под влиянием тимозина, унипотентные предшественники превращаются в IV класс – Т-лимфобласты, затем V класс – незрелые Т- лимфоциты (претимоциты) , и VI класс - Т лимфоциты. Здесь образуются все типы Т-лимфоцитов – Т-хелперы, Т-супрессоры, Т-киллеры.

Незрелые и затем зрелые тимоциты приобретают антигенраспознающие рецепторы к самым разнообразным антигенным веществам, однако здесь с антигенами они не встречаются, т.к. тимус защищен особым гемато-тимусным барьером. Одновременно происходит выбраковка Т-лимфоцитов, направленных против собственных антигенных детерминант. Образованные Т-лимфоциты проникают в сосудистое русло и с током крови заносятся в периферические лимфоидные органы.

Третий этап – этап антигензависимой дифференцировки осуществляется в Т-зависимых зонах периферических лимфоидных органов –лимфатических узлов, селезенки, лимфоидной ткани трубчатых органов, где создаются условия для встречи антигена с Т-лимфоцитом , имеющим рецептор к данному антигену.

Контакт с антигенными детерминантами вызывает активизацию Т-лимфоцита, он превращается в Т-иммунобласт . Процесс превращения Т-лимфоцита в Т-иммунобласт называется реакцией бласттрансформации. Т-иммунобласт неоднократно делится митотическим путем и образует клон клеток.

Часть Т-лимфоцитов из полученного клона становятся Т-лимфоцитами памяти.

Т-хелперы секретируют медиаторы – лимфокины, стимулирующие гуморальный иммунитет.

Т-супрессоров синтезируют лимфокины, которые угнетают гуморальный иммунитет.

Т-киллерный иммунобласт дает клон клеток, среди которых различаются

- Т-киллеры – цитотоксические лимфоциты, которые являются эффекторами клеточного иммунитета.

- Т-клетки памяти , обеспечивающие при повторно встрече с антигеном (по механизму новой бласттрансформации) вторичный иммунный ответ, который протекает быстрее и сильнее первого;

- Т-амплификаторы , которые не рециркулируют, являются короткоживущими, стимулируют размножение клеток – источников Т-лимфоцитов;

В-лимфоцитопоэз

Первый этап осуществляется в красном костном мозге и включает: I класс – стволовые клетки, II класс – полустволовые клетки, III класс – унипотентные В-поэтинчувствительные клетки – про-В-лимфоциты, в которых еще не начинается реаранжировка генома.

Второй этап – антигеннезависимой дифференцировки у птиц осуществляется в специальном лимфоидном органе – фабрициевой сумке. У млекопитающих и человека его аналог точно не установлен, но большинство исследователей считают, что второй этап также происходит в красном костном мозге. Здесь образуются IV класс – В-лимфобласты (на уровне которых начинается реаранжировка генома), V класс – В-пролимфоциты (пре-В-лимфоциты, в цитоплазме которых выявляется IgM), VI класс – рецепторные Во- лимфоциты – характеризуются появлением иммуноглобулинов класса М на поверхности плазматической мембраны.

В процессе второго этапа В-лимфоциты приобретают разнообразные рецепторы к антигенам.

Третий этап – антигензависимой пролиферации и дифференцировки осуществляется в В-зонах периферических лимфоидных органов.

Здесь происходит встреча рецепторного Во-лимфоцита, его активизация и трансформация в В-иммунобласт. В результате пролиферации иммунобласта образуется клон клеток, среди которых различают В-клетки памяти и плазмоциты. Последние являются эффекторами гуморального иммунитета, т.е. синтезируют иммуноглобулины (антитела) разных классов. Во время первой стадии антителообразования лимфоциты секретируют IgM. Затем после перестройки гена (реаранжировки) происходит смена класса иммуноглобулина и синтезируются IgG.

Антитело взаимодействует со специфичным ему антигеном с образованием комплекса антиген-антитело. Эти иммунные комплексы затем фагоцитируются макрофагами, эозинофилами, нейтрофилами.

Натуральные киллеры (NK-клетки) образуются в красном костном мозге. Эти клетки выделяют специфический фактор NKCF (natural killer cytotoxic factor), дистантно действующий на клетки-мишени постепенно и длительно. При клонировании NK-клеток клетки-памяти не образуются.

В данной статье будет описана схема кроветворения. Существование нашего организма немыслимо без поддержания на высоком уровне функционирования как системы иммунитета, так и системы крови. Каждая составляющая нашего сложно устроенного тела выполняет свою специфическую работу, обеспечивающую в итоге существование.

К органам кроветворения относят железу тимус и костный мозг, лимфоузлы и селезенку, а также лимфоидную ткань в слизистых органов пищеварения, кожи и дыхания. Они расположены в разных местах, но по своей сути это общая система. В ней постоянно передвигается и обновляется кровь. В результате питательные вещества поступают в тканевую и лимфатическую жидкости.

Какие органы входят в состав этой жизнеобеспечивающей системы

Кроветворением или гемоцитопоэзом называют процесс, при котором образуются форменные элементы крови - эритроциты, лейкоциты, тромбоциты.

Органы кроветворения классифицируются в свою очередь на два вида:

  • Центральные.
  • Периферические.

К центральным можно отнести красный костный мозг, который представляет собой место образования эритроцитов, тромбоцитов, гранулосодержащих клеток крови и предшественников лимфоцитов, а также тимус - центральный орган лимфообразования.

Но схема кроветворения этим не ограничивается. В периферических органах происходит деление транспортированных из предыдущей группы Т- и В-лимфоцитов с проведением их дальнейшей специализации под влиянием антигенов в эффекторные клетки, которые осуществляют непосредственно функцию иммунной защиты, и клетки памяти.

Здесь же они и заканчивают свой жизненный цикл.

Схема кроветворения уникальна:

  • Ретикулярные клетки выполняют механическую функцию, осуществляют синтез компонентов основного вещества, обеспечивают специфичность клеток микроокружения.
  • Остеогенные клетки составляют эндост, обеспечивая более интенсивное кроветворение.
  • Адвентициальные клетки окружают кровеносные сосуды, покрывая более 50% наружной поверхности капилляров.
  • Эндотелиальные клетки синтезируют белок коллаген, гемопоэтины (стимуляторы кровообразования).
  • Макрофаги за счет наличия лизосом и фагосом уничтожают чужеродные клетки, участвуют в построении гемовой части гемоглобина, путем передачи ему трансферрина.
  • Межклеточное вещество - кладовая коллагена различных типов, гликопротеинов и протеогликанов.

Рассмотрим основные этапы кроветворения.

Эритропоэз

Процесс образования эритроцитов происходит в специальных эритробластических островках костного мозга. Такие островки представлены совокупностью макрофагов, окруженных клетками эритроцитарного ряда.

Именно эти эритроидные клетки, в свою очередь, берут свое начало от первоначальной колониеобразующей клетки (КОЕ-Э), участвующей во взаимодействии с группой макрофагов красного костного мозга. При этом все новообразованные клетки, начиная от проэритробласта и заканчивая ретикулоцитом, контактируют с фагоцитирующей клеткой за счет специального рецептора, который носит название сиалоадгезин.

Поэтому эти макрофаги, посредством окружения эритроцитарных клеток, являются как бы их "кормильцем", способствуя поступлению и накоплению в этих клетках крови не только веществ, стимулирующих процесс образования эритроцитов (эритропоэтин), но и витаминов кроветворения, таких как, например, витамин D3, и молекул ферритина. Таким образом, можно достаточно точно утверждать, что это микроокружение в постоянном режиме обеспечивает все новые и новые очаги эритропоэза.

Гранулоцитопоэз

Гранулоцитосодержащие гемопоэтические клетки занимают не центральное, а периферическое местоположение. Незрелые формы этих клеток крови окружены белковыми соединениями - протеогликанами. В процессе деления общее количество этих клеток более чем в 3 раза превышает число эритроцитов и в 20 раз превышает числовой показатель одноименных клеток, расположенных в периферической кровеносной системе.

Тромбоцитопоэз

Мегакариобластические и уже созревшие формы клеток (мегакариоциты) расположены так, что их часть цитоплазматической жидкости, расположенной по периферии, проходит через поровые отверстия внутрь сосуда, поэтому отделение тромбоцитов осуществляется именно в кровоток. То есть мегакариоциты красного костного мозга отвечают за образование тромбоцитов.

Лимфоцтопоэз и моноцитопоэз

В чем еще состоят особенности кроветворения?

Среди клеток миелоидного ряда имеют место и незначительные скопления лимфоцитарных и моноцитарных представителей кроветворения, окружающих сосуд.

В норме при адекватно осуществляющихся физиологических условиях только созревшие фирменные элементы способны к проникновению через отверстия в стенке синусов костного мозга, поэтому при обнаружении в мазке крови и его микроскопировании миелоцитов и эритробластов, смело можно утверждать о наличии патологического процесса.

Желтый костный мозг

К органам кроветворения относится и желтый костный мозг.

Medulla ossium flava заполняет диафизы трубчатых костей и содержит большое количество клеток адипоцтов (жировых клеток) с высоким уровнем насыщения этого жира пигментом липохромом, обеспечивая окраску в желтый цвет, отсюда и пошло название желтого костного мозга.

В условиях обычной жизнедеятельности этот орган не может выполнять функцию кровообразования. Но это не относится к состояниям, сопровождающимся развитием массивной кровопотери или шока различного генеза, при которых в тканях желтого мозга происходит образование очагов миелопоэза и запускается процесс дифференцировки поступающих сюда клеток, как стволовых, так и полустволовых.

Четкого отграничения одного вида костного мозга от другого нет. Это разделение относительно, так как незначительное количество адипоцитов (клеток medulla ossium flava) содержится и в красном костном мозге. Их взаимоотношение меняется в зависимости от возрастных критериев, условий жизни, характера питания, особенностей функционирования эндокринной, нервной и других немаловажных систем организма.

Вилочковая железа

Тимус - орган, относящийся к центральным органам лимфопоэза и иммуногенеза. Активно участвует в процессе кроветворения.

Из прибывших сюда костномозговых предшественников Т-лимфоцитарных клеток происходит процесс антигеннезависимой дифференцировки в зрелые формы Т-лимфоцитов, выполняющих функции как клеточного, так и гуморального звена иммунитета.

В нем имеется корковое и мозговое вещество. Клетки коркового составляющего этого органа отделены от циркулирующей крови посредством гематотимусного барьера, который препятствует воздействию на дифференцирующиеся лимфатические клетки избыточного количества антигенов.

Поэтому удаление вилочковой железы (тимэктомия), проведенное при опытах на новорожденных животных, приводит к резкому угнетению пролиферации лимфоцитов абсолютно во всех лимфатических тканях кроветворных органов. Падает концентрация лимфоцитов крови и лейкоцитов, наблюдаются явления атрофии органов, кровоизлияний, вследствие чего, организм не способен оказать сопротивление инфекционным агентам.

Селезенка

Самый крупный орган периферической системы кроветворения, участвующий в формировании гуморального и клеточного иммунитета, удалении старых и поврежденных эритроцитов и тромбоцитов ("кладбище эритроцитов"), депонирование крови и тромбоцитарных клеток крови (1/3 всего объема).

Лимфатические узлы

В их ткани осуществляется процесс антигензависимой пролиферации и последующей дифференцировки Т- и В-лимфоцитов в клетки-эффекторы и образованием Т- и В-клеток памяти.

Помимо обычных лимфоцитов, у некоторых представителей млекопитающих обнаружены гемолимфатические узлы, с содержащейся в их синусах кровью. У человека же такие узлы встречаются редко. Расположены по ходу почечных артерий околопочечной клетчатки, либо по ходу брюшинной части аорты и, крайне редко, в заднем средостении.

Единая иммунная система слизистых оболочек (MALT) - включает в себя лимфоциты слизистых желудочно-кишечного тракта, бронхо-легочной системы, мочеполовых путей и выводных протоков молочных и слюнных желез.

Продукты для кроветворения

Кровь выполняет важные функции, такие как транспортировка кислорода и питательных веществ к клеткам, удаление отходов через органы выделительной системы. Оптимальная работа человеческого организма в целом зависит от крови. Поэтому условия жизни и питание оказывают влияние на ее качество.

Продукты, способствующие кроветворению: шампиньоны, ячмень, грибы шиитаке, кукуруза, овес, рис, лист одуванчика, финики, виноград, логанова ягода, соевые бобы, дудник, пшеничные отруби, авокадо, ростки люцерны, артишок, свекла, капуста, сельдерей, морская капуста, шпинат, яблоки, абрикосы, пырей.

Нами подробно рассмотрена схема кроветворения.

Кроветворение - образование из стволовой кроветворной клетки клеток-предшественниц конкретных гемопоэзов, их пролиферация и дифференцировка, а также созревание клеточных элементов крови в условиях специфического микроокружения и под влиянием факторов гемопоэза. В пренатальном периоде гемопоэз происходит в нескольких развивающихся органах. Кроветворение после рождения, у детей, подростков и взрослого человека осуществляется в костном мозге плоских костей (череп, рёбра, грудина, позвонки, кости таза) и эпифизов трубчатых костей, а кроветворными органами для лимфоцитов являются селезёнка, тимус, лимфатические узлы, лимфоидные фолликулы в составе разных органов.

· Клетки кровяных островков желточного мешка до 12 нед внутриутробного развития образуют первые клетки крови - первичные эритробласты - крупные клетки, содержащие ядро и эмбриональные типы Hb.

· В течение второго месяца развития стволовые клетки крови заселяют печень, селезёнку и тимус. Образуются все виды клеток крови.

· Костный мозг у эмбриона закладывается к концу третьего месяца внутриутробного периода. К четвёртому месяцу в костном мозге появляются лимфоидные элементы и родоначальные клетки крови, а с пятого месяца возникает дифференцированное костномозговое кроветворение. Помимо этого, созревание лимфоцитов происходит и в других органах - печени, тимусе, селезёнке, лимфатических узлах. Последние в антенатальном периоде также являются органом эритроцитопоэза. К моменту рождения, после рождения и у взрослого кроветворение ограничивается костным мозгом и лимфоидной тканью. При недостаточности костного мозга восстанавливается экстрамедуллярный гемопоэз (кроветворение в печени, селезёнке и лимфатических узлах).

Зрелые клетки периферической крови развиваются из предшественников, созревающих в красном костном мозге. Унитарная теория кроветворения (рис. 24–3) предусматривает, что родоначальница всех клеточных элементов крови - стволовая кроветворная клетка . Её потомки - полипотентные клетки -предшественницы лимфоцитопоэза (CFU-Ly) и миелопоэза (CFU-GEMM). В результате деления CFU-Ly и CFU-GEMM их потомки остаются полипотентными или превращаются в коммитированные (предопределённые судьбой) унипотентные клетки -предшественницы , также способные делиться, но дифференцирующиеся (развивающиеся) только в одном направлении. Пролиферацию унипотентных клеток–предшественниц стимулируют колониестимулирующие факторы и интерлейкины (особенно ИЛ3).

Рис . 24–3 . Схема гемопоэза .; CFU‑GEMM - полипотентная клетка-предшественница миелопоэза; CFU‑Ly - полипотентная клетка-предшественница лимфоцитопоэза; CFU‑GM - полипотентная клетка-предшественница гранулоцитов и моноцитов; CFU‑G - полипотентная клетка-предшественница нейтрофилов и базофилов. Унипотентные предшественники: BFU‑E и CFU‑E - эритроцитов; CFU‑Eo - эозинофилов; CFU‑M - моноцитов; CFU‑Meg - мегакариоцитов. CFU - Colony Forming Unit - колониеобразующая единица (КОЕ), BFU - Burst Forming Unit - взрывообразующая единица.

· Эритропоэз (рис. 24–4). Начало эритроидного ряда - стволовая клетка эритропоэза, или взрывообразующая единица (BFU-E), из которой формируется унипотентный предшественник эритроцитов (CFU-E). Последний даёт начало проэритробласту. Дальнейшая дифференцировка приводит к увеличению содержания Hb и потере ядра. Из проэритробласта путём пролиферации и дифференцировки последовательно развиваются эритробласты: базофильный ® полихроматофильный ® оксифильный (нормобласт) и далее неделящиеся формы - ретикулоцит и эритроцит. От BFU-E до нормобласта - 12 клеточных поколений, а от CFU-E до позднего нормобласта - 6 или меньше клеточных делений. Длительность эритропоэза (от его стволовой клетки BFU-E до эритроцита) - 2 недели. Интенсивность эритропоэза контролирует эритропоэтин. Основной стимул для выработки эритропоэтина - уменьшение содержания кислорода в крови (рО 2) - гипоксия (рис. 24–5).

Рис . 24–4 . Эритропоэз . Из взрывообразующей единицы эритропоэза BFU-E дифференцируется унипотентный предшественник эритроцитов CFU-E. Последний даёт начало проэритробласту. Дальнейшая дифференцировка приводит к уменьшению размеров клеток и количества органелл, но к увеличению содержания Hb и потере ядра. При этом из проэритробласта последовательно дифференцируются базофильный, полихроматофильный, оксифильный (неделящийся нормобласт) эритробласт, ретикулоцит, эритроцит. Вытолкнутое из нормобласта ядро поглощает макрофаг.

Рис . 24–5 . Регуляция эритропоэза . Пролиферацию взрывообразующей единицы эритропоэза (BFU-E) стимулирует ИЛ3. Унипотентный предшественник эритроцитов CFU-E чувствителен к эритропоэтину. Решающий стимул для образования эритроцитов - гипоксия, запускающая синтез эритропоэтина в почке, а у плода также в печени. Эритропоэтин выходит в кровь и поступает в костный мозг, где стимулирует размножение и дифференцировку унипотентного предшественника эритроцитов (CFU-E) и дифференцировку последующих клеток эритроидного ряда. В результате количество эритроцитов в крови увеличивается. Соответственно возрастает количество кислорода, поступающего в почку, что тормозит образование эритропоэтина.

· Гранулоцитопоэз (рис. 24–6). Гранулоциты образуются в костном мозге. Нейтрофилы и базофилы происходят из полипотентной клетки-предшественницы нейтрофилов и базофилов (CFU-G), а эозинофилы - из унипотентного предшественника эозинофилов (CFU-Eo). CFU-G и CFU-Eo - потомки полипотентной клетки-предшественницы гранулоцитов и моноцитов (CFU-GM). При развитии гранулоцитов можно выделить такие стадии: миелобласты ® промиелоциты ® миелоциты ® метамиелоциты ® палочкоядерные и сегментоядерные гранулоциты. Специфические гранулы появляются на стадии миелоцитов; с этого момента клетки называют в соответствии с типом образующихся из них зрелых гранулоцитов. Клеточные деления прекращаются на стадии метамиелоцита. Пролиферацию и дифференцировку клеток-предшественниц контролируют колониестимулирующие факторы (гранулоцитов и макрофагов - GM-CSF, гранулоцитов - G-CSF), ИЛ3 и ИЛ5 (предшественники эозинофилов).

Рис . 24–6 . Гранулоцитопоэз . В ходе дифференцировки предшественников гранулоцитов выделяют: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный и сегментоядерный гранулоциты.

· Колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF). На образование и пролиферацию фагоцитов (гранулоцитов и моноцитов) влияет более десятка цитокинов. Наиболее значим GM-CSF, способствующий образованию моноцитов и гранулоцитов. GM-CSF продуцируют моноциты, Т-лимфоциты, фибробласты, клетки эндотелия. GM-CSF влияет на ранние стадии гемопоэза, стимулируя пролиферацию практически всех классов ранних клеток-предшественниц гранулоцитов и макрофагов.

· Колониестимулирующий фактор гранулоцитов (G-CSF) влияет на полипотентную клетку-предшественницу нейтрофилов и базофилов (CFU-G), стимулируя её дифференцировку в унипотентные клетки-предшественницы нейтрофилов и базофилов. G-CSF синтезируют макрофаги и фибробласты.

· Колониестимулирующий фактор макрофагов (M-CSF) стимулирует полипотентную клетку-предшественницу гранулоцитов и моноцитов (CFU-GM), а также на унипотентный предшественник моноцитов (CFU-M). M-CSF вырабатывают макрофаги и фибробласты.

· Интерлейкин -3 действует на стволовую кроветворную клетку и полипотентную клетку-предшественницу миелопоэза (CFU-GEMM), на большинство клеток-предшественниц миелоидного ряда, стимулируя формирование эритроцитов, гранулоцитов, моноцитов, тромбоцитов. Вырабатывается Т-лимфоцитами и клетками стромы костного мозга. ИЛ-3 поддерживает размножение практически всех классов ранних клеток-предшественниц.

· Моноцитопоэз . Моноциты и гранулоциты имеют общую клетку-предшественницу - колониеобразующую единицу гранулоцитов и моноцитов (CFU-GM), образующуюся из полипотентной клетки-предшественницы миелопоэза (CFU-GEMM). В развитии моноцитов выделяют две стадии - монобласт и промоноцит.

· Тромбоцитопоэз . Из мегакариобластов развиваются самые крупные (30–100 мкм) клетки костного мозга - мегакариоциты (рис. 24–7). При дифференцировке мегакариоцит увеличивается в размерах, его ядро становится дольчатым. Образуется развитая система демаркационных мембран, по которым происходит отделение («отшнуровка») тромбоцитов (рис. 24–8). Пролиферацию предшественников мегакариоцитов - мегакариобластов - стимулирует синтезируемый в печени тромбопоэтин.

Рис . 24–7 . Мазок костного мозга . Видны клетки крови, преимущественно эритроциты, на разных стадиях дифференцировки. Хорошо заметен мегакариоцит (1) - очень крупная клетка с большим дольчатым ядром. Окраска по Романовскому Гимзе .

Рис . 24–8 . Образование тромбоцитов . Находящийся в костном мозге мегакариоцит образует протромбоцитарную псевдоподию. Последняя проникает сквозь стенку капилляра в его просвет. От псевдоподии отделяются тромбоциты и поступают в кровоток.

· Лимфопоэз . Из стволовой кроветворной клетки (CFU-blast) происходит полипотентная клетка-предшественница лимфопоэза (CFU-Ly), которая впоследствии даёт начало клеткам-предшественницам B-лимфопоэза, T-лимфопоэза и (частично) предшественницам NK-клеток. Ранние предшественники В-лимфоциты образуются в костном мозге, а Т-лимфоцитов - в тимусе. Дальнейшая дифференцировка включает в себя уровни про-B(T)-клеток, пре-B(T)-клеток, незрелых B(T)-клеток, зрелых («наивных») B(T)-клеток и (после контакта с Аг) - зрелых B(T)-клеток окончательных стадий дифференцировки. Продуцируемый клетками стромы костного мозга ИЛ7 способствует образованию Т- и В-лимфоцитов, воздействуя на их клетки-предшественницы. В отличие от других клеток крови, лимфоциты могут пролиферировать и вне костного мозга. Это происходит в тканях иммунной системы в ответ на стимуляцию.

· Пункция костного мозга . Для оценки гемопоэзов, особенно при заболеваниях крови, проводят пункцию костного мозга.

à Оснащение : игла Кассирского; шприц ёмкостью 10–20 мл; стерильные шарики и салфетки; спирт, 5% раствор йода, эфир; лейкопластырь; предметные стёкла; шлифованное стекло; пробирки с разводящей жидкостью для подсчёта абсолютного количества мегакариоцитов и миелокариоцитов.

à Обезболивание : премедикация с использованием промедола, седуксена, пипольфена и дроперидола; местное обезболивание раствором новокаина.

à Техника

1 . Место пункции - грудина на уровне III–IV межреберья или рукоятка по средней линии.

2 . Положение больного - на спине, под лопатки подкладывают валик.

3 . После обработки кожи больного иглу Кассирского берут в правую руку и быстрым движением вводят в костномозговой канал. Иглу вводят строго по срединной линии вращающими движениями. При прокалывании наружной костной пластинки слышится хруст и ощущается чувство «провала»; при этом необходимо прекратить дальнейшее продвижение иглы вглубь. После этого из иглы вынимают мандрен, насаживают шприц и проводят аспирацию. Во избежание большой примеси крови к костному мозгу необходимо набирать как можно меньше материала (не более 0,5 мл).

4 . Если аспират получить не удаётся, следует осторожно продвинуть иглу вглубь кости или, не вынимая иглу из кожи, сделать прокол соседнего участка кости, предварительно вставив мандрен.

5 . При появлении в шприце костного мозга, аспирацию прекращают, шприц снимают с иглы, вставляют мандрен и в таком собранном виде иглу извлекают из кости. Место пункции смазывают йодом и накладывают стерильную повязку (салфетку прикрепляют лейкопластырем).

6 . Из аспирированного костного мозга приготавливают мазок и проводят его исследование (см. рис. 24–7).

Вены безмышечного типа в стенке имеют эндотелий, подэндотелиальный слой, средняя оболочка невыраженна, более выражена наружная оболочка. Они располагаются в костях, плаценте, твердой и мягкой мозговой оболочке, сетчатке, селезенке. Из них кровь течет по д силой собственной тяжести/сокращения мышечных компонентов органа.

Вены мышечного типа со слабым развитием мышечных элементов (голова, шея. верхняя полая вена) в стенке имеет эндотелий, подэндотелиальный слой, средняя оболочка содежит небольшое количество гладких миоцитов, наружная – адвентициальная. Со средним развитием мышечных элементов (верхняя часть туловища, верхние конечности) – внутренняя оболочка без особенностей и имеет на границе алистические волокна. Средняя оболчка имеет циркулярно расположенные пучки миоцитов; наружная – без особенностей. Вены с сильно развитыми мышечными элементами (все что ниже сердца) в среднем слое имеет больше мышечных элементов, гладкие миоциты встречаются во внутреннем и наружном слоях.

    Сердце. Источники эмбрионального развития, Гистофизиология и регенерация.

Сердце – основной орган, приводящий в движение кровь. Источники развития: мезенхима образует эндокард, висцеральный листок спланхотома – миокард и эпикард. В стенке различают 3 оболочки: 1) эндокард – содержит эндотелий, подэндотелиальный слой, мышечно-эластический слой, наружный соединительнотканный слой. 2) миокард – образован типичными, атипичными и секреторными кардиомицитами. М/у волокнами имеются прослойки соединительной ткани с сосудами. В предсердии 2 слоя миокард (продольный и циркулярный), в желудочках – 3слоя. атипичные кардиомиоциты составляют проводящую систему. 3) эпикард – висцеральный листок перикарда.

    Гемопоэз. Определение понятия. Органы кроветворения и иммуногенеза. Общая морфофункциональная характеристика и классификация.

Гемопоэз – развитие крови. Различают эмбриональный (происходит в эмбриональный период) и постэмбриональный (процесс физиологической регенерации крови) гемопоэз.

В эмбриональном гемопоэзе выделяют 3 этапа: мезобластический, печеночный, медуллярный (костномозговой). В этот период органами кроветворения являются желточный мешок, тимус, красный костный мозг.

Органы кроветворения делят на: центральные (тимус, красный костный мозг) – антиген независимые; периферические – антиген зависимые (миндалины, селезенка, лимфатические узлы, лимфатические узелки).

    Эмбриональный гемопоэз. Основные этапы кроветворения в эмбриогенезе.

Выделяют 3 этапа, сменяющих последовательно друг друга: 1) мезобластический – развитие клеток крови начинается во внезадорышевых органах – мезенхиме стенки желточного мешка, хориона (с 3 по 9 неделю развития зародыша) и появляется первая генерация стволовых клеток крови (СКК). Наружные клетки дифференцируются в эндотелиальные клетки кровеносных сосудов; внутренние клетки дифференцируются в первичные эритробласты (мегалобласты) – мегалобластический тип и интраваскулярным. Клетки крупные, содрежат ядра, мало гемоглобина. За пределами сосудов, в стенке желточного мешка, образуются гранулоциты (нейтрофилы, эозинофилы) – экстраваскулярный тип. 2) печеночный – начинается в печени с 5-6 недели развития плода, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени завершается перед рождением. СКК заселяют тимус (с 7-8 недели развиваются Т-лимфоциты), селезенку (с 12 нед.) и лимфатические узлы (с 10 нед.). Мегалобластический тип меняется на нормобластический тип кроветворения, остается только экстраваскулярным. Эритроциты выбрасывают ядро, в них увеличивается содержание гемоглобина, цитоплазма становится оксифильной. Здесь т.ж. образуются зернистые лейкоциты, мегакариоциты. Меняется микроокружение. 3) медуллярный (костномозговой) – появление 3ей генерации СКК в костном мозге, гемопоэз начинается с 10й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза. В селезенке и лимфатических узлах к рождению появляются соединительнотканные капсулы и трабекулы, кровеносные сосуды. Остаются только очаги лимфоидной ткани.

    Постэмбриональный гемопоэз. Теория кроветворения. Современная схема кроветворения.

Постэмбриональный гемопоэз – физиологическая ргенерация крови (клеточное обновление), которая компенсирует физиологическое разрушение дифференцированных клеток.

Миелопоэз – происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоидной ткани находят СКК и СК соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимф-кие узлы и т.д.

Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образовании Т- и В-лимфоцитов, иммуноцитов. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, п.э. в них представлены 2 основные клеточные линии – клетки ретикулярной ткани и гемопоэтические.

В основе схемы кроветворения лежит унитарная теория. Унитарная теория: родоначальницей всех клеток лежит 1 стволовая клетка, образующая 0,15 трлн клеток в сутки (250 млрд – эритроцитов, 250 млрд - лейкоцитов).

Схему делят на 6 классов: 1) полипотентные клетки – предшественники СКК – лимфоцитоподобные, гетерогенные. Подразделяются на про-СКК (начинают пролиферировать при трансплотации), др.-СКК. кр.-СКК – пролиферируют кратковременно. Мультипотентны. МСК – мезнхимальные стоволовые клетки – микроокружение СКК, поддерживают и регулируют кроветворение.

2) Частично детерминированные клетки – предшественники (полустволовые клетки): 2 типа – КОЕ (колония образующая единица)-М миелопоэза (эритроциты), КОЕ-Л лимфопоэза (белые клетки).

3) Унипотентные КП (клетки предшественники) (олигопотентные): КОЕ-М миелопоэза – образует линии КОЕ-Г (гранулоциты), КОЕ-М (макрофаги), КОЕ-Э (эритроциты), КОЕ-Мгк (мегакариоциты), КОЕ-Т (тучные клетки). КОЕ-Л лимфопоэза: КП-В лимфоцитов, КП-Т лимфоцитов, КП-натуральные киллеры, КП-дендритные клетки.

4) Пролиферирующие клетки – морфологически распознаваемы клетки. Бластные клетки.

5) Созревающие клетки – происходит дифференцировка клеток. Клетки уменьшаются в размерах, изменяется форма ядра, меняется цвет цитоплазмы и ядра, появляется специфическая зернистость.

6) Зрелые классы: бласттрансформация – только для Т- и В-лимфоцитов (взаимодействие рецепторного поля в 5 классе) обмен рецепторными полями.

    Эритропоэз и тромбоцитопоэз в эмбриональном и постэмбрио­нальном периодах.

Родоначальницей эритроидных клеток является полипотентная СКК, способная формировать в культуре костного мозга колонии. Дифференцирующаяся полипотентная СКК дает 2 типа мультипотентных частично коммитированных СКК: 1) коммитированные к лимфоидному типу дифференцировки; 2) КОЕ-ГЭММ – единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов. Из второго типа мультипотентных СКК дифференцируются унипотентные единицы: буретообразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эритроидные клетки, которые являются коммитированными родоначальными клетками эритропоэза. БОЕ-Э – наиболее примитивные клетки – предшественники эритроцитов, которые способны гнерировать тысячи эритроидных предшественников. Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компармента мультипотентных СКК. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э. Под влиянием эритропоэтина (гликопротеиновый гормон) КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты, ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются.

Кровяные пластинки образуются в костном мозге из мегакариоцитов – гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий: СКК – КОЕ-ГЭММ – КОЕ-МГЦ – мегакариобласт – промегакариобласт – мегакариоцит – тромбоциты (кровяные пластинки). Весь период образования тромбоцитов составляет примерно 10 дней.

    Лейкоцитопоэз в эмбриональном и постэмбриональном периодах.

Источником для гранулоцитопоэза являя.тся СКК и мультипотентные КОЕ-ГЭММ, одновременно начинающие дифференцироваться ч/з ряд промежуточных стадий в трех различных направлениях и образующие гранулоциты 3х видов: нейтрофилы, эозинофилы, базофилы. Основные ряды для каждой из групп гранулоцито слагаются из следующих клеточных форм: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) – миелобласт – промиелоцит – миелоцит – метамиелоцит – палочкоядерный гранулоцит – сегментоядерный гранулоцит. По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость.

Образование моноцитов: СКК – КОЕ-ГЭММ – КОЕ-ГМ – унипотентные предшественники моноцитов (КОЕ-М) – монобласт – промоноцит – моноцит. Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз проходит следующие стадии: СКК – КОЕ-Л (лимфоидная родоначальная клетка) – унипотентные предшественники лимфоцитов (пре-Т-клетки, пре-В-клетки) – лимфобласт – пролимфоцит – лимфоцит. Особенность: способность дифференцированных клеток (лимфоцитов) дедифференцироваться в бластные формы.

    Красный костный мозг. Локализация, характеристика гемопоэтических островков и микроокружения, регенерация. Желтый костный мозг.

Красный костный мозг (ККМ) – центральный орган кроветворения. Первые недели выполняет остеогенную функцию, далее – кроветворную. Стромой ККМ является ретикулярная и жировая ткани, последняя увеличиваясь приводит к затуханию кроветворения. Сосуды ККМ: артерии с выраженной мышечной стенкой, крупные венозные синусы (депо крови), синусоидные капилляры. Ближе к кровеносным сосудам располагаются очаги формирования эритроцитов, они в процессе скапливаются вокруг макрофагов, которые содержат железо. Эритроциты меняют окраску: полихроматофильные – оксифильные - теряют ядра.

Рядом с синусоидными капиллярами располагаются самые крупные клетки – мегакариобласты (ядро округлое, дольчатое) и мегакариоциты (ядра лопастные). Их отростки проникают ч/з стенку синусоидных капилляров, отрываясь эти части образуют тромбоциты, содержащие отрывки цитоплазмы и частично органеллы.

По периферии, ближе к эндосту, располагаются зернистые лйкоциты. Здесь же идет процесс постоянной дифференцировки. Только зрелые лимфоциты проникают в кровяное русло.

Предшественники лимфоцитов мигрируют сразу в тимус – Т-лимфоциты; другая часть мигрирует в В-зависимые зоны лимфатических органов. Дальше происходит дифференцировка и пролиферация.

Регенерация осуществляется путем деления. имеет иннервация.

    Тимус. Развитие, строение, функции. Возрастная и акцидентальная инволюция тимуса.

Тимус (вилочковая железа) – центральный орган кроветворения и иммунитета, антиген независимый. Образуется из эпителия глоточной кишки (3-4пара жаберных карманов). Эпителий постепенно разделяется на дольки, м/у которыми из мезенхимы образуются соединительнотканные перегородки. Стромой дольки является эпителий, который потеряв строение пласта, постепенно разрыхляется и принимает ретикулоподоный вид, поэтому называется ретикулоэпителиоцитами. Микроокружение включает в себя: макрофаги, кровеносные сосуды с эндотелиальныеми и адвентициальнями клетками (фибробласты, липоциты).

На уровне ПСК (2 класс) происходит заселение тимуса. Эдесь происходи дифференцировка и образование Т-лимфоцитов, которые мигрируют в Т-зависимые периферийные зоны лимфатических узлов (ЛУ). Здесь происходит пролиферация Т-лимфоцитов и образование специализированных Т-лимфоцитов (Т-хелперы, киллеры, памяти). При чем эти процессы протекают в периферийных органах только при раздражении.

Лимфоциты, имеющие на своей поверхности антигены, в норме за пределы тимуса не выходят. В противном случае они могут быть причиной аутоиммунной агрессии.

Строение тимуса: различают корковое и мозговое вещество. Корковое вещество наиболее темное. мозговое – светлое. Лимфоциты заселяют сначала мозговое вещество. Здесь эпителиальные клетки располагаются более компактно и образуют сеть. В корковом веществе по периферии располагаются СК – лимфобласты. Эта зона субкапсулярная. Эти Т-лимфоциты устойчивы к физическим факторам, облучению, глюкокордикоидам надпочечников. Восстановление идет за счет Т-зоны – акцидентальная инвалюция тимуса. В мозговом веществе легче просматриваются эпителиоциты. С возрастом происходит увеличение эпителиальных телец – телец Гассаля (эпителиальные жемчужины). В центре этих телец происходит распад эпителиальных клеток – возрастная инвалюция тимуса. Виды телец: оксифильная, форма ближе к округлой, по периферии видны плоские базофильные ядра. Размеры разные.

Кровоснабжение: корковое и мозговое вещество кровоснабжается отдельно. Т-лимфоциты из коркового вещества не переходят в мозговое, а мигрируют сразу в Т-периферийную органы кроветворения. Кровоснабжение мозгового вещества больше замкнуто, из него не могу выйти Т-лимфоциты. этому препятствует специальный барьер (эндотелий, базальная мембрана капилляра, эпителиальные клетки – стромы. макрофаги).

Регенерация: максимальное развитие тимус достигает к 25 годам, после чего идет инвалюция. В старости т.ж. имеет функциональное значение. Регенерация возможна только в детском возрасте. Микроокружение тимуса вырабатывает специальные вещества – тимозины, они способствуют кроветворению, в частности вырабатывают Т-активины.

    Периферические органы кроветворения. Общая морфофункциональная характеристика. Понятие об антигензависимом кроветворении.

К периферическим органам кроветворения относят миндалины, селезенку, лимфатические узлы и узелки. В периферических органах происходят размножение приносимыхсюда из центральных органов Т- и В-лимфоцитов и специализация их под влиянием антигенов в эффекторные клетки, осуществляющие иммунную защиту, и клетки памяти. К.т. здесь погибают клетки крови, завершающие свой жизненный цикл.

    Лимфатические узлы. Общая морфофункциональная характеристика. Строение и функции синусов лимфатического узла.

ЛУ – располагаются в определенных местах. Размер от нескольких мм до 1,5 см. Развивабтся на 2 месяце внутриутробного развития, в них происходит универсальное кроветворение. После рождения остается только лимфоцитопоэз. Выполняют защитную (барьерную), кроветворную (только лимфоцитопоэз), иммунобиологическую (В-лимфоплазматические клетки), депонирующую (депонирует лимфу) функции.

ЛУ имеет бобовидную форму.По большой кривизне располагается большое количество приносящих сосудов, только 1 сосуд располагается в воротах, является выносящим. Снаружи ЛУ покрыт соединительнотканной капсулой. Внутри отходят соединительнотканные перегородки – трабекулы.

Лимфа протекает в ЛУ по сосудам снаружи выпуклой стороны и попадает в систему синусов: 1) краевой (подкапсулярный синус) – располагается м/у капсулой и ЛУ. 2) вокругузелковый (корковый) синус – м/у трабекулой и ЛУ. 3) промежуточный (мозговой) синус – м/у трабекулой и мякотными тяжами. 4) воротный синус – в области ворот.

    Лимфатические узлы. Гистофизиология коркового, мозгового вещества и паракортикальной зоны. Участие лимфатических узлов в иммунном ответе.

ЛУ включает в себя лимфоидную ткань, подразделяется на 2 части: мозговое и корковое.

Корковое вещество представлено лимфатическими узелками, мозговое – мякотными тяжами. Вместе они составляют В-зависимые зоны. На границе коркового и мозгового вещества выделяют паракортикальную Т-зависимую зону.

При раздражении антигеном (антиген зависимый орган) в гомогенных ЛУз появляются светлый (реактивный) центр (В-лимфоциты), а сам ЛУз подразделяется на корковое и мозговое вещество. Созревшие В-лимфоциты выходят в кровеносное русло, дальше в ткань – превращаются в плазматические клетки, которые начинают вырабатывать антитела.

Микроокружение: нефагоцитирующие макрофаги – они способны на поверхности накапливать антиген, при определенном количестве которого происходит пролиферация и бласттрансформация лимфоцитов. Выделяют 2 вида: 1) дендритные – находятся в реактивных центрах ЛУ и активируют В-лимфоциты; 2) интердигитирующие – находятся в паракортикальной зоне ЛУ и активируют Т-лимфоциты, является аналогом эпидермальных макрофогаов. Т.ж. в микроокружение входят ретикулярные клетки и резидентные (фагоцитирующие) макрофаги.

Регенерация возможна только в детском возрасте.

    Селезенка. Общая морфофункциональная характеристика. Функции селезенки в эмбриональном и постнатальном периодах.

Селезенка развивается на 2 месяце эмбриогенеза. Сначала выступает в роли универсального органа кроветворения, после рождении – только лимфоцитопоэз. Выполняет защитную (барьерную), иммунобиологическую функции, вырабатывает поэтины (тромбоцитопоэтины и эритропоэтины), участвует в разрушении эритроцитов. Селезенка является нежизненно важным органом. Снаружи покрыта брюшиной (висцеральным листком), под ней располагается соединительнотканная капсула (здесь находятся гладкие миоциты, при сокращении которых возникает боль в левом подреберье; при резком наполнении селезенки происходит ее разрыв). Регенерирует хорошо, при условии сохранения всех составных частей.

    Белая пульпа селезенки. Строение, функции. Участие в иммунных реакциях.

Белая пульпа - имеют ЛУз различают 4 зоны: 1) периартериальная зона – тимус зависимая зона; 2) реактивный центр – (светлая зона) В-лимфоциты, антиген зависимая зона; 3) мантийная зона – В- и Т-лимфоциты, зона расположена на пути миграции; 4) краевая зона – (маргенальная) В- и Т- лимфоциты на пути миграции.

Всегда располагается центральная аретрия на периферии.

    Красная пульпа селезенки. Строение и функции. Особенности внутриорганного кровоснабжения селезенки.

Красная пульпа – ретикулярные клетки и резидентные макрофаги (строма), которые разрушают эритроциты: билирубин поступает обратно в печень, а железо – в ККМ.

Закрытая система кровоснабжения: (а – кап - в) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – венозный синус – пульпарная вена – трабекулярная в.

Открытая система: (а. – кр. пульпа – в.) селезеночная а. – трабекулярная а. – пульпарная а. – центральная а. – кисточковая а. – капилляр – красная пульпа - венозный синус – пульпарная вена – трабекулярная в.

    Иммунная система слизистых оболочек. Общая морфофункциональная характеристика. Гистофизиология небной миндалины.

Миндалина выполняет защитную (барьерную), кроветворную (лимфоцитопоэз), иммунобиологическую (выработка антигена) функции. Небная миндалина имеет 10-15 крипт. Снаружи покрыта многослойным плоским неороговевающим эпителием, под ней располагается собственная пластинка слизистой оболочки (рыхлая соединительная ткань). В собственной пластинки слизистой оболочки располагаются лимфатические узелки (ЛУз). Если не было встречи с антигеном ЛУз – гомогенны, если встреча состоялась, то ЛУз – гетерогенны, т.е. имеют 2 части: корковое и мозговое. В мозговом веществе происходит пролиферация В-лимфоцитови их бласттрансформация.

Единая иммунная система слизистых оболочек представленная скоплениями лимфоцитов в слизитых оболочках ЖКТ, бронхов, мочеполовых путей, выводных протоков молочных и слюнных желез. Лимфоциты могут формировать одиночные/групповые лимфоидные узелки. ЛУз осуществляют локальную защиту. Лимфоциты располагаются в рыхлой волокнистой соединительной ткани оболочек, покрытых эпителием.

    Клеточные основы иммунных реакций. Общая морфофункциональная характеристика иммунокомпетентных клеток и их взаимодействие в иммунном ответе.

Иммунная сиситема объединяет органы и ткани, в которых происходит образование и взаимодействие клеток – иммуноцитов, выполняющих функцию распознования генетически чужеродных субстанций и осуществляющих специфическую реакцию.

При первой встречи с антигеном (первичный ответ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировки в иммуноциты. В результате пролиферации увеличивается чилсо лимфоцитов соответствующего клона. Дифференцировка приводит к появлению двух типов клеток – эффекторных и клеток памяти. Эффекторные клетки непосредственно участвуют в ликвидации/обезвреживании чужеродного материла. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти – это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (вторичный ответ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.

При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты/лимфоциты – киллеры, которые непосредственно участвуют в уничтожении чужеродных клеток других органов и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродный тканей в условиях трансплантации.

Основными клетками. осуществляющими иммунные реакции являются Т- и В-лимфоциты, макрофаги и ряд взаимодействующих с ними клеток.

Т-лимфоциты – дифференцируются в тимусе. поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы, в которых под влиянием антигенов образуются Т-иммуноциты и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: Т-киллеры, Т-хелперы, Т-супрессоры.

В-лимфоциты – основные клетки, участвующие в гуморальном иммунитете. Образуются из СКК ККМ, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов. При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

    Общий план строения и источники эмбрионального развития стенки пищеварительной трубки.

Эпителиальная выстилка пищеварительной трубки и железы развивается из энтодермы и эктодермы. Из энтодермы формируются однослойный призматический эпителий слизистой оболочки желудка, тонкого и большей части толстого кишечника, а т.ж. железистая паренхима печени и поджелудочной железы. Из эктодермы ротовой полости и анальной бухт эмбриона обруется многослойный плоский эпителий ротовой полости, слюнных желез и каудального отдела прямой кишки. Мезенхима является источником развития соединительной ткани и сосудов, а т.ж. гладкой мускулатуры пищеварительных органов. Из висцерального листка спланхнотома развивается однослойный плоский эпителий серозной оболочки – висцерального листка брюшины.

В стенки пищеварительной трубки выделяют 4 оболочки: слизистая, подслизистая, мышечная и наружная (сероза/адвентиция).

    Слизистая оболочка переднего, среднего и заднего отделов пищеварительной трубки. Общая характеристика и особенности строения.

В слизистой оболочке во всех отделах пищеварительной трубки рельеф неровный: складки (встерачются везде; выпячивания слизистой оболочки при наличии подслизистой основы), ямки (в желудке; небольшие углубления в подлежащей ткани), крипты (более глубокие углубления), ворсинки (только в тонком отделе кишечника; выпячивания слизистой оболочки пальцевидной формы).

Слизистая оболочка состоит из 3 пластинок: 1) эпителиальная – в переднем и заднем отделах – многослойный; в среднем – однослойный. 2) собственная пластинка – рыхлая неоформленная соединительная ткань, в которой располагаются кровеносные и лимфатические сосуды, нервные волокна, могут находиться лимфоидные узелки, железы. 3) мышечная пластинка – гладкая мышечная ткань, лежит на границе слизистой и подслизистой. Чаще пучки мышечной пластинки образуют 2 слоя: внутренний (циркулярный) и наружный (продольный). Она придает пластичность, сокращаясь, способствует изменению рельефа и выделению секрета из желез.

    Ротовая полость. Гистофизиология слизистой оболочки органов ротовой полости (губа, язык, десна, щека, твердое и мягкое небо).

К ротовой полости относят структуры, образующие стенки полости и их производные. Стенки: губы, щеки, десны, твердое и мягкое небо.

Органы: язык, слюнные железы, зубы, небные миндалины.

Слизистая оболочка состоит из многослойного неороговевающего эпителия, но в участках повышенной механической нагрузки ороговевает (спинка языка, средняя линия щек, десны, части твердого неба). Собственная пластинка образует сосочки, которые большие, высокие, располагаются в участках с повышенной механической нагрузкой. Подслизистая основа отсутствует в местах с повышенной механической нагрузкой.

    Губа. Гистофизиология кожной, слизистой и переходной частей.

Губа – ограничивает ротовую полость, является зоной перехода от кожного покрова в слизистую пищеварительного тракта. В губе выделяют 3 отдела: 1) кожный – имеет строение тонкой кожи, эпидермис, дерма, сальные железы, волосы; 2) промежуточный (переходный) – включает гладкую часть (красная кайма) и ворсинчатую часть (линия смыкания губ). Гладкая часть выстлана многослойным плоским ороговевающим эпителием, ч/з который просвечиваются капилляры, имеется много рецепторов. Ворсинчатая часть – многослойный плоский неороговевающий эпителий (у новорожденного эпителий образует выросты). 3) слизистый отдел – многослойный неороговевающий эпителий, под ним располагается собственная пластинка слизистой оболочки.

В губе взрослого в кожной части хорошо выражены производные, отсутствуют ворсинки в ворсинчатой части губы, хорошо выражена мышечная ткань, которая залегает в толще губы.



gastroguru © 2017