Газообмен в легких и тканях значение дыхания. Что такое газообмен в крови, в легких и тканях? Особенности газообмена

Газообмен в легких. Вдыхаемый человеком воздух и выдыхаемый сильно различаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа - 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, зато углекислого газа становится больше - 4-4.5%. Что же происходит с воздухом в легких?

Вы помните, что альвеолы легких образуют огромную поверхность. Все альвеолы окутаны кровеносными капиллярами, в которые по малому кругу кровообращения поступает венозная кровь из сердца. Стенки альвеол и капилляров очень тонкие. Кровь, которая попадает в легкие, бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Кровь приобретает алую окраску. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Из венозной крови в легочные альвеолы выделяется также вода, которая в виде пара при выдохе удаляется из легких.

Газообмен в тканях. В органах нашего тела постоянно происходят окислительные процессы, на которые расходуется кислород. Поэтому концентрация кислорода в артериальной крови, которая поступает в ткани по сосудам большого круга кровообращения, больше, чем в тканевой жидкости. В результате кислород свободно переходит из крови в тканевую жидкость и в ткани. Углекислый газ, который образуется в ходе многочисленных химических превращений, наоборот, переходит из тканей в тканевую жидкость, а из нее в кровь. Таким образом кровь насыщается углекислым газом.

Дыхательные движения. Газообмен в организме возможен только при условии постоянной смены воздуха в легких. Поэтому дыхание происходит постоянно. Вдохнув первый раз во время рождения, человек дышит всю жизнь. Дыхательный цикл складывается из вдоха и выдоха, которые ритмично следуют один за другим. В легких нет мышц, которые могли бы попеременно сжимать и расширять их. Легкие растягиваются пассивно, следуя за движениями стенок грудной полости. Дыхательные движения совершаются с помощью дыхательных мышц. В выдохе и вдохе участвуют две группы мышц. Основные дыхательные мышцы - это межреберные мышцы и диафрагма.

При сокращении наружных межреберных мышц ребра поднимаются, а диафрагма, сокращаясь, становится плоской. Поэтому обьем грудной полости увеличивается. Легкие, следуя за стенками грудной полости, расширяются, давление в них уменьшается и становится ниже атмосферного. Поэтому воздух по воздухоносным путям устремляется в легкие - происходит вдох.

При выдохе внутренние межреберные мышцы опускают ребра, диафрагма расслабляется и становится выпуклой. Ребра под действием собственного веса и сокращения внутренних межреберных мышц, а также мышц живота, которые прикрепляются к ребрам, опускаются. Грудная полость возвращается в исходное состояние, легкие уменьшаются в обьеме, давление в них увеличивается, становится чуть выше атмосферного. Поэтому избыток воздуха выходит из легких - происходит выдох.

Так осуществляются спокойный вдох и выдох. В глубоком вдохе принимают участие мышцы шеи, стенок грудной полости и живота.

Дыхательные движения совершаются с определенной частотой: у подростков - 12-18 в минуту, у взрослых - 16-20.

Жизненная емкость легких. Важным показателем развития органов дыхания является жизненная емкость легких. Это наибольший объем воздуха, который может выдохнуть человек после глубокого вдоха. Ее измеряют с помощью специального прибора - спирометра. У взрослого человека жизненная емкость в среднем составляет 3500 мл.

У спортсменов этот показатель обычно на 1000-1500 мл больше, а у пловцов может достигать 6200 мл. При большой жизненной емкости легкие лучше вентилируются, организм получает больше кислорода.

У тучных людей жизненная емкость легких на 10-11% меньше, поэтому у них обмен газов в легких понижен.

Регуляция дыхания. Деятельностью дыхательной системы управляет дыхательный центр. Он расположен в продолговатом мозге. Идущие отсюда импульсы координируют мышечные сокращения при вдохе и выдохе. От этого центра по нервным волокнам через спинной мозг поступают импульсы, которые вызывают в определенном порядке сокращение мышц, ответственных за вдох и выдох.

Возбуждение самого центра зависит от возбуждений, идущих от различных рецепторов, и от химического состава крови. Так, прыжок в холодную воду или обливание холодной водой вызывает глубокий вдох и задержку дыхания. Резко пахучие вещества также могут вызвать задержку дыхания. Это связано с тем, что запах раздражает обонятельные рецепторы в стенках носовой полости. Возбуждение передается в дыхательный центр, и его деятельность затормаживается. Все эти процессы осуществляются реф-лекторно.

Слабое раздражение слизистой оболочки полости носа вызывает чихание, а гортани, трахеи, бронхов- кашель. Это защитная реакция организма. При чихании, кашле инородные частицы, попавшие в дыхательные пути, удаляются из организма.

В дыхательном центре находятся клетки, чувствительные к малейшему изменению содержания углекислого газа в межклеточном веществе. Избыток углекислого газа возбуждает дыхательный центр, это, в свою очередь, вызывает учащение дыхания. Лишний углекислый газ быстро удаляется, и, когда его концентрация возвращается к норме, частота дыхания снижается.

Как вы видите, регуляция дыхания происходит рефлекторно, но под контролем коры полушарий большого мозга. Это легко доказать; ведь каждый из нас может по собственному желанию изменить частоту дыхательных движений.

Краткая история курения

Один из самых распространенных пороков человека - курение табака - имеет 500-летнюю историю. В Европу листья и семена табака были привезены из Америки моряками экспедиции Христофора Колумба. Сначала табак был объявлен всеисцеляющей лечебной травой. Вот как описывались его чудодейственные свойства в одной испанской книге: «Табак вызывает сон, избавляет от усталости, успокаивает боль, вылечивает головную боль...»

Поэтому нет ничего удивительного в том, что уже в XVI в. табак прочно завладел аристократическими салонами. Особенно популярным стало курение в XVII и XVIII вв. Мужчины, женщины и молодые люди начали курить, нюхать и жевать табак.

Рекомендуемый вначале как лекарственное средство, табак, однако, очень скоро приобрел плохую славу. Борьбу с табакокурением начала испанская королева Изабелла. Ее примеру последовал французский король Людовик XIV, а русский царь Михаил Федорович Романов приказал отрезать нос каждому, кто курит. Однако уже ничто не могло остановить распространение этой «дымящейся отравы». Курение табака превратилось в новую статью дохода для многих торговцев. Приблизительно в середине XVIII в. в Бразилии начали делать папиросы, а в начале XIX в. - производить сигареты.

Так за сравнительно короткое время были созданы все условия для быстрого распространения курения табака. Этот порок постепенно охватил все слои населения. В настоящее время курение - самый распространенный вид наркомании во всем мире.

Состав табачного дыма и его действие на организм

Для тканей легких очень опасно курение. Ведь смола, образующаяся при сгорании табака и бумаги, не может выводиться из легких и в течение многих лет оседает на стенках воздухоносных путей, буквально убивая клетки их слизистой оболочки. Легкие курильщика теряют свой естественный розовый цвет, становятся черными. Такие легкие чаще подвержены различным заболеваниям, в том числе и онкологическим. В настоящее время наука располагает тысячами доказательств, подтверждающих тот факт, что табак содержит губительные для организма человека вещества. Их около 400! Вредные вещества, содержащиеся в табачном дыме, могут быть объединены в четыре группы: ядовитые алкалоиды, раздражающие вещества, ядовитые газы, канцерогенные вещества.

Одним из самых известных веществ является никотин, получивший свое название по имени французского посланника в Лиссабоне Ж. Нико, который во второй половине XVI в. преподнес Марии Медичи эту «всеисцеляющую» травку для лечения мигрени. Никотин содержится в листьях различных растений: табака, индийской конопли, польского хвоща, некоторых плаунов и др. Одной капли чистого никотина (0,05 г) достаточно, чтобы умертвить человека. Никотин из крови матери легко проникает через плаценту в кровеносную систему плода.

В табачных листьях, кроме никотина, содержится еще 11 алкалоидов, важнейшие из которых: норникотин, никотирин, никотеин, никотимин. Все они сходны с никотином по строению и свойствам и поэтому имеют похожие названия.

Печальная статистика раковых заболеваний курильщиков достаточно красноречива. Канцерогенным действием обладают различные ароматические углеводороды, которые содержатся в табачном дыму (например, бензопирен), некоторые содержащиеся в дыму фенолы, а также нитрозамин, гидразин, винилхлорид и др. Из неорганических веществ - это в первую очередь соединения мышьяка и кадмия, радиоактивный полоний, олово и висмут-210.

Из табачного дыма выделен десяток веществ, оказывающих раздражающее действие на слизистую оболочку. Наиболее важным из них является ненасыщенный альдегид пропеналь. Он обладает высокой химической и биологической активностью, вызывая у курильщиков кашель.

В газовой фракции табачного дыма содержится большое число неорганических соединений, обладающих высокой химической и биологической активностью, таких как оксид углерода, сероводород, цианид водорода и др.

  • Когда больной гриппом или другим недугом чихает, микроскопические капельки слюыы и слизи, содержащие бактерии и вирусы, летят на расстояние до 10 м, причем некоторое время эти капельки способны «висеть» в воздухе, заражая окружающих.

Проверьте свои знания

  1. Расскажите, какие процессы происходят в легочных альвеолах.
  2. Каков механизм газообмена в тканях?
  3. Каким образом совершаются дыхательные движения?

Подумайте

  1. Чем отличается легочный газообмен от тканевого?
  2. Что выгоднее для ныряльщика - сделать перед погружением несколько вдохов и выдохов или набрать в легкие как можно больше воздуха?

В альвеолах легких происходит газообмен: кровь насыщается кислородом и выделяет углекислый газ. В тканях происходит обратный процесс. Вентиляция легких происходит благодаря вдоху и выдоху, которые осуществляются при сокращении и расслаблении диафрагмы и межреберных мышц. Деятельностью дыхательной системы руководит нервная система. Изменение концентрации углекислого газа в крови влияет на частоту дыхательных движений.

Одной из важнейших функций организма является дыхание. Во время него происходит газообмен в тканях и легких, при котором поддерживается окислительно-восстановительный баланс. Дыхание - это сложный процесс, обеспечивающий кислородом ткани, использование его клетками при метаболизме, а также удаление негативных газов.

Этапы дыхания

Чтобы понять, как происходит газообмен в тканях и легких, необходимо знать этапы дыхания. Всего их три:

  1. Внешнее дыхание, при котором происходит газообмен между клетками организма и внешней атмосферой. Внешний вариант делится на обмен газов между внешнем и внутренним воздухом, а также на обмен газами между кровью легких и альвеолярным воздухом.
  2. Транспортировка газов. Газ в организме находятся в свободном состоянии, а остальная часть переносится в связанном состоянии гемоглобином. Газообмен в тканях и легких происходит именно через гемоглобин, в котором содержится до двадцати процентов углекислого газа.
  3. Тканевое дыхание (внутреннее). Данный вид можно разделить на обмен газами между кровью и тканями, и на усвоение клетками кислорода и выделение различных продуктов жизнедеятельности (метана, углекислого и т. д.).

В процессах дыхания принимают участие не только легкие и дыхательные пути, но и мышцы грудной клетки, а также головной и спинной мозг.

Процесс газообмена

Во время насыщения воздухом легких и при выдохах происходит его изменение на химическом уровне.

В выдыхаемом воздухе при температуре ноль градусов и при давлении 765 мм рт. ст., содержится около шестнадцати процентов кислорода, четыре процента углекислого газа, а остальное - азот. При температуре 37 о С воздух в альвеолах насыщается парами, при этом процессе изменяется давление, падая до пятидесяти миллиметров ртутного столба. При этом давление газов в альвеолярном воздухе составляет чуть больше семисот мм рт. ст. В этом воздухе содержится пятнадцать процентов кислорода, шесть - углекислого газа, а остальное - это азот и прочие примеси.

Для физиологии газообмена в легких и тканях имеет большое значение разница парциального давления и между углекислым газом и кислородом. Парциальное давление кислорода составляет около 105 мм рт. ст., а в венозной крови оно в три раза меньше. Из-за этой разницы кислород поступает из альвеолярного воздуха в венозную кровь. Таким образом, происходит ее насыщение и превращение в артериальную.

Парциальное давление СО 2 в венозной крови менее пятидесяти миллиметров ртутного столба, а в альвеолярном воздухе - сорок. Из-за этой небольшой разницы углекислый газ переходит из венозной крови в альвеолярную и выводится организмом при выдохе.

Газообмен в тканях и легких осуществляется при помощи капиллярной сетки сосудов. Через их стенки происходит насыщение кислородом клеток, а также удаляется углекислый газ. Этот процесс наблюдается только при разнице в давлении: в клетках и тканях кислородное доходит до нуля, а давление углекислого газа составляет около шестидесяти мм рт. ст. Это позволяет проходить СО 2 из клеток в сосуды, превращая кровь в венозную.

Транспорт газов

Во время внешнего дыхания в легких происходит процесс превращения венозной крови в артериальную путем соединения кислорода с гемоглобином. В результате такой реакции образуется оксигемоглобин. При достижении клеток организма этот элемент распадается. В соединении с бикарбонатами, которые образуются в крови, углекислота поступает в кровь. В результате образуются соли, но при этом процессе реакция ее остается неизменной.

Достигнув легких, бикарбонаты распадаются, отдавая оксигемоглобину щелочной радикал. После этого бикарбонаты превращаются в углекислый газ и водяные пары. Все эти вещества распада выводятся из организма во время выдоха. Механизм газообмена в легких и тканях производится путем превращения углекислого газа и кислорода в соли. Именно в таком состоянии эти вещества транспортируются кровью.

Роль легких

Основная функция легких - это обеспечение обмена газами между воздухом и кровью. Этот процесс возможен из-за огромной площади органа: у взрослого человека она составляет 90 м 2 и почти такой же площадью сосудов МКК, где происходит насыщение венозной крови кислородом и отдача углекислого газа.

Во время выдоха из организма выводится более двухсот различных веществ. Это не только углекислый газ, но и ацетон, метан, эфиры и спирты, пары воды и т. д.

Помимо кондиционирования, функция легких заключается в защите организма от инфекции. При вдохе, все патогенные вещества оседают на стенках дыхательной системы, в том числе альвеол. В них содержатся макрофаги, захватывающие микробов и уничтожающие их.

Макрофаги вырабатывают хемотаксические вещества, которые привлекают гранулоциты: они выходят из капилляр и принимают прямое участие в фагоцитозе. После поглощения микроорганизмов, макрофаги могут переходить в лимфатическую систему, где может происходить воспаление. Патологические агенты заставляют вырабатывать лейкоцитарные антитела.

Функция метаболизма

Особенности функций легких включает метаболическое свойство. Во время обменных процессов происходит образование фосфолипидов и белков, их синтез. Также в легких происходит синтез гепарина. Дыхательный орган участвует в образовании и разрушении биологически активных веществ.

Общая схема дыхания

Особенность строения дыхательной системы позволяет воздушным массам легко проходить по дыхательным путям и попадать в легкие, где происходят обменные процессы.

Воздух попадает в дыхательную систему через носовой ход, затем проходит по ротоглотке в трахею, откуда масса доходит до бронхов. После прохождения через бронхиальное дерево воздух попадает в легкие, где и происходит обмен между разными типами воздуха. Во время этого процесса кислород поглощается клетками крови, превращая венозную кровь в артериальную и доставляя ее к сердцу, а оттуда она разносится по всему организму.

Анатомия дыхательной системы

Строение дыхательной системы выделяет воздухоносные пути и собственно дыхательную часть. Последняя представлена легкими, где происходит газообмен между воздушными массами и кровью.

Воздух проходит в дыхательную часть по воздухоносным путям, представленными полостью носа, гортанью, трахеей и бронхами.

Воздухоносная часть

Начинается дыхательная система носовой полостью. Она разделена на две части хрящевой перегородкой. Спереди каналы носа сообщаются с атмосферой, а сзади - с носоглоткой.

Из носа воздух попадает в ротовую, а затем в гортанную часть глотки. Здесь происходит скрещивание дыхательной и пищеварительной систем. При патологии носовых ходов, дыхание может осуществляться через рот. В этом случае воздух также будет попадать в глотку, а затем в гортань. Она располагается на уровне шестого шейного позвонка, образуя возвышение. Эта часть дыхательной системы может смещаться во время разговора.

Через верхнее отверстие гортань сообщается с глоткой, а снизу орган переходит в трахею. Она является продолжением гортани и состоит из двадцати неполных хрящевых колец. На уровне пятого грудного позвоночного сегмента трахея разделяется на пару бронхов. Они направляются к легким. Бронхи разделены на части, образуя перевернутое дерево, которое как бы проросло ветвями внутрь легких.

Дыхательную систему завершают легкие. Они расположены в грудной полости по обеим сторонам от сердца. Легкие делятся на доли, каждая из которых разделяется на сегменты. Они имеют форму неправильных конусов.

Сегменты легких разделяются на множество частей - бронхиол, на стенках которых располагаются альвеолы. Весь этот комплекс получил название альвеолярный. Именно в нем происходит газообмен.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в альвеолах относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором количество кислорода снижается, а углекислого газа - увеличивается. Рассмотрим процесс газообмена в легких и тканях человека.

Состав альвеолярного воздуха отличается от вдыхаемого и выдыхаемого. Это объясняется тем, что при вдохе в альвеолы поступает воздух воздухоносных путей (т.е. выдыхаемый), а при выдохе, наоборот, к выдыхаемому (альвеолярному) примешивается атмосферный воздух, находящийся в тех же воздухоносных путях (объем мертвого пространства).

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие путем диффузии через стенки альвеол и кровеносных капилляров. Общая толщина их составляет около 0,4мкм. Направление и скорость диффузии определяются парциальным давлением газа, или его напряжением.

Парциальное давление и напряжение - по сути синонимы, но о парциальном давлении говорят, если данный газ находится в газовой среде, а о напряжении, если он растворен в жидкости. Парциальным давлением газа называют ту часть общего давления газовой смеси, которая приходится на данный газ.

Разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода около 70 мм рт. ст., а для углекислого газа - 7 мм рт. ст.

Экспериментальным путем установлено, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступать 25-60 см 3 кислорода в минуту. Человеку в покое нужно примерно 25-30 см 3 кислорода в минуту. Следовательно, разность движений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Переносит кислород от легких к тканям и углекислый газ от тканей к легким - кровь. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Основные количества кислорода и углекислого газа переносятся в химически связанном виде. Основной переносчик кислорода - гемоглобин крови, каждый грамм которого связывает 1,34 см 3 кислорода.

Углекислый газ переносится кровью в основном в виде химических соединений - бикарбонатов натрия и калия, но часть его переносится и в связанном с гемоглобином состоянии.

Обогащенная кислородом в легких кровь по большому кругу разносится ко всем тканям организма, где происходит диффузия в ткани в силу разности его напряжения в крови и тканях. В клетках тканей кислород используется в биохимических процессах тканевого (клеточного) дыхания - процессы окисления углеводов, жиров.

Количество потребляемого кислорода и выделяемого углекислого газа изменяются у одного и того же человека. Зависит оно не только от состояния здоровья, но и от физической активности, питания, возраста, пола, температуры среды, массы и площади поверхности тела и др.

Например, на холоде газообмен усиливается, чем поддерживается постоянство температуры тела. По состоянию газообмена судят о здоровье человека. Для этого разработаны специальные методы исследований, основанные на анализе состава вдыхаемого и собранного выдыхаемого воздуха.

Обмен газов в легких происходит в альвеолах.

Широкие трубки бронхов с хрящевой и мышечной основой разветвляются на бронхиолы, которые постепен-но теряют хрящ, но сохраняют мышечные элементы. Они переходят в альвеолярные ходы, образуя перед самым входом в альвеолу некоторое подобие сфинктера. Эта анатомическая особенность указывает на возможность регулирования притока воздуха к альвеолам. Альвеолярные ходы с многочисленными выпячиваниями их стенок, представляющими легочные альвеолы, являются конечными ка-налами. Число альвеол в легких исчисляется сотнями миллионов.

Стенки альвеол очень тонки (0,004 мм) и построены из основной мембраны и тонкого слоя эпителия. С внешней стороны к ним прилегает богатая сеть крове-носных капилляров (рис. 74). Следует отметить, что сосудистая сеть капилляров в альвеолах проявляет способность к самостоя-тельным сокращениям, которые происходят периодически под каки-ми-то нам не известными влияниями, создавая в альвеолах изменения кровотока. Состояние эпителия стенок альвеолы может отражаться на проницаемости клеточных мембран для кислорода и углекислоты.

Состав воздуха

Состав вдыхаемого воздуха

В атмосферном воздухе содержится 20,94% кислорода, 0,03% углекислого газа, 79,3% азота. Содержание других газов очень незначительно.

Состав выдыхаемого воздуха

В выдыхаемом воздухе содержание кислорода составляет 16,3 %, углекислого газа 4%, азота 79,7%. В составе выдыхаемого воздуха содержится 16,3% кислорода, 4% углекислого газа и 79,7% азота.

Состав альвеолярного воздуха

Обмен газов в легких возможен только при разнице напряже-ния газов (рис. 75). При вдохе воздух проходит не дальше мелких бронхов, так как дальше место занято запасным (альвеолярным) воздухом. Состав альвеолярного воздуха точно выяснен. Раньше его получали сложными методами с введением особого катетера в легкие. Теперь это делается проще, так как выяснено, что послед-ние порции воздуха при усиленном выдохе имеют состав альвео-лярного.

Разница в напряжении газов в альвеолярном и вдыхаемом воз-духе ведет к появлению тока кислорода в глубину легких и угле-кислоты ему навстречу. Поэтому выдыхаемый воздух имеет совсем иной состав:

Диффузия газов

Во время вдоха атмосферный воздух через дыхательные пути поступает в альвеолы. Происходит обмен газов между альвеолами и стенками мельчайших кровеносных сосудов вокруг них путем диффузии. Установлено, что между напря-жением кислорода и углекислоты в альвеолярном воздухе, в срав-нении с напряжением их в крови, всегда существует разница, заставляющая кислород проходить в кровь, а углекислоту обратно, т. е. обмен газов здесь происходит путем только диффузии через очень тонкую стенку (около 1р.) (рис. 76). В альвеолярном воздухе кислород находится под повышенным давлением, а в крови — углекислый газ. В спокойном состоянии человек поглощает из атмосферного воздуха 250-300 мл кислорода в минуту (рис. 37).

Однако было бы невер-но считать, что живой эпителий относится к проникновению газов совершенно пассивно. Как бы ни были тонки клетки эпителия, все же у них есть одна сторона, обращенная к воздушному пространству альвеол, и другая сторона, прилегающая к лимфе, отделяющей ее от кровеносных сосудов. Ясно, что обе эти стороны не могут иметь один и тот же коэффициент проницаемости для газов. Состояние клеток эпителия характерно именно тем, что проницаемость их постоянно меняется. Кроме того, следует иметь в виду, что на боль-ших высотах парциальное давление газов падает настолько, что объяснить проникновение кислорода из легких в кровь становится затруднительным, если не считать, что клеточный состав альвеол активно участвует в проведении через него газов. Вместе с тем, надо помнить, что очень тонкий эпителий альвеол успешно сопротив-ляется прохождению через него жидкости (крови, лимфы).

В клетках и тканях происходит обмен газов — поглощается кислород и выделяется углекислота. Материал с сайта

Перешедший путем диффузии из легочных альвеол в кровь кислород, соединяясь с гемоглобином красных кровяных телец — эритроцитов, доставляется ко всем тканям в организме человека .

Образование углекислоты в тканях определяется по увеличению ее количества в венозной крови в сравнении с артериальной.

Обмен газов между кровью и тканями (клетками) также как и газообмен между легочными альвеолами и кровеносными сосудами, происходит путем диффузии. Так как кислород в крови находится под большим давлением, он переходит в ткани, а в тканях углекислый газ, находящийся под большим давлением, переходит в кровь. Клетки отделены от крови лимфой, поэтому газы переходят сначала в лимфу, а из нее передаются в кровь.

Газообмен в легких и тканях.

В легких происходит газообмен между поступающим в альвеолы воздухом и протекающей по капиллярам кровью. Интенсивному газообмену между воздухом альвеол и кровью способствует малая толщина так называемого аэрогематического барьера. Он образован стенками альвеолы и кровеносного капилляра. Толщина барьера – около 2,5 мкм. Стенки альвеол построены из однослойного плоского эпителия, покрытого изнутри тонкой пленкой фосфолипида – сурфактантом, который препятствует сли- панию альвеол при выдохе и понижает поверхностное натяжение.

Альвеолы оплетены густой сетью кровеносных капилляров, что сильно увеличивает площадь, на которой совершается газообмен между воздухом и кровью.

При вдохе концентрация (парциальное давление) кислорода в альвеолах намного выше (100 мм рт. ст.), чем в венозной крови (40 мм рт. ст.)протекающей по легочным капиллярам. Поэтому кислород легко выходит

из альвеол в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови капилляров высокая (47 мм рт. ст.), диффундирует в альвеолы, где его парциальное давление ниже (40 мм рт. ст.). Из альвеол легкого углекислый газ выводится с выдыхаемым воздухом.

Таким образом, разница в давлении (напряжение) кислорода и углекислого газа в альвеолярном воздухе, в артериальной и венозной крови дает возможность кислороду диффундировать из альвеол в кровь, а угле-

кислому газу из крови в альвеолы.

Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом кровь способна поглощать эти газы в значительном количестве. В 1000 мл артериальной крови содержится до

20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе 4 молекулы кислорода, образуя неустойчивое соединение – оксигемоглобин.

В тканях организма в результате непрерывного обмена веществ и интенсивных окислительных процессов расходуется кислород и образуется углекислый газ. При поступлении крови в ткани организма гемоглобин отдает клеткам и тканям кислород. Образовавшийся при обмене веществ углекислый газ переходит из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение – карбогемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.

Гемоглобин эритроцитов способен соединяться и с другими газами,например, с окисью углерода, при этом образуется довольно прочное соединение карбоксигемоглобин.

Недостаточное поступление кислорода в ткани (гипоксия) может возникнуть при недостатке его во вдыхаемом воздухе. Анемия – уменьшение содержания гемоглобина в крови – появляется, когда кровь не может переносить кислород.

При остановке, прекращении дыхания развивается удушье (асфиксия). Такое состояние может случиться при утоплении или других неожиданных обстоятельствах. При остановке дыхания, когда сердце еще про-

должает работать, делают искусственное дыхание с помощью специальных аппаратов, а при их отсутствии – по методу «рот в рот», «рот в нос»или путем сдавливания и расширения грудной клетки.

23. ПОНЯТИЕ О ГИПОКСИИ. ОСТРЫЕ И ХРОНИЧЕСКИЕ ФОРМЫ. ВИДЫ ГИПОКСИЙ .

Одним из обязательных условий жизни организма является непрерывное образование и потребление им энергии. Она расхо­дуется на обеспечение метаболизма, на сохранение и обновление структурных элементов органов и тканей, а также на осуществле­ние их функции. Недостаток энергии в организме приводит к су­щественным нарушениям обмена веществ, морфологическим из­менениям и нарушениям функций, а нередко - к гибели органа и даже организма. В основе дефицита энергии лежит гипоксия.

Гипоксия - типовой патологический процесс, характеризую­щийся как правило снижением содержания кислорода в клетках и тканях. Развивается в результате недостаточности биологиче­ского окисления и является основой нарушений энергетического обеспечения функций и синтетических процессов организма.

типы гипоксии

В зависимости от причин и особенностей механизмов развития выделяют следующие типы:

1. Экзогенный:

гипобарический;

нормобарический.

Респираторный (дыхательный).

Циркуляторный (сердечно-сосудистый).

Гемический (кровяной).

Тканевый (первично-тканевый).

Перегрузочный (гипоксия нагрузки).

Субстратный.

Смешанный.

В зависимости от распространенности в организме гипоксия может быть общей или местной (при ишемии, стазе или веноз­ной гиперемии отдельных органов и тканей).

В зависимости от тяжести течения выделяют легкую, умеренную, тяжелую и критическую гипоксию, чреватую гибелью организма.

В зависимости от скорости возникновения и длительности тече­ния гипоксия может быть:

молниеносной - возникает в течение нескольких десятков секунд и нередко завершается смертью;

острой - возникает в течение нескольких минут и может длиться несколько суток:

хронической - возникает медленно, длится несколько не­дель, месяцев, лет.

Характеристика отдельных типов гипоксии

Экзогенный тип

Причина: уменьшение парциального давления кислорода Р 0 2 во вдыхаемом воздухе, что наблюдается при высоком подъеме в го­ры ("горная" болезнь) или при разгерметизации летательных ап­паратов ("высотная" болезнь), а также при нахождении людей в замкнутых помещениях малого объема, при работах в шахтах, ко­лодцах, в подводных лодках.

Основные патогенные факторы:

гипоксемия (снижение содержания кислорода в крови);

гипокапния (снижение содержания С0 2), которая развивается в результате увеличения частоты и глубины дыханий и приво­дит к снижению возбудимости дыхательного и сердечно-сосу­дистого центров головного мозга, что усугубляет гипоксию.

Респираторный (дыхательный) тип

Причина: недостаточность газообмена в легких при дыхании, что может быть обусловлено снижением альвеолярной вентиля-

ции или затруднением диффузии кислорода в легких и может на­блюдаться при эмфиземе легких, пневмое. Основные патогенные факторы:

артериальная гипоксемия. например при пневмое, гиперто­нии малого круга кровообращения и др.;

гиперкапния, т. е. увеличение содержания С0 2 ;

гипоксемия и гиперкапния характерны и для асфиксии - удушения (прекращения дыхания).

Циркуляторный (сердечно-сосудистый) тип

Причина: нарушение кровообращения, приводящее к недоста­точному кровоснабжению органов и тканей, что наблюдается при массивной кровопотере, обезвоживании организма, нарушениях функции сердца и сосудов, аллергических реакциях, нарушениях электролитного баланса и др.

Основной патогенетический фактор - гипоксемия венозной крови, так как в связи с ее медленным протеканием в капиллярах происходит интенсивное поглощение кислорода, сочетающееся с увеличением артериовенозной разницы по кислороду.

Гемический (кровяной) тип

Причина: снижение эффективной кислородной емкости крови. Наблюдается при анемиях, нарушении способности гемоглобина связывать, транспортировать и отдавать кислород в тканях (на­пример, при отравлении угарным газом или при гипербарической оксигенации).

Основной патогенетический фактор - снижение объемного содержания кислорода в артериальной крови, а также падение напряжения и содержания кислорода в венозной крови.

Тканевый тип

Нарушение способности клеток поглощать кислород;

Уменьшение эффективности биологического окисления в результате разобщения окисления и фосфорилирования. Развивается при угнетении ферментов биологического окисле­ния, например при отравлении цианидами, воздействии ионизи­рующего излучения и др.

Основное патогенетическое звено - недостаточность биологи­ческого окисления и как следствие дефицит энергии в клетках. При этом отмечаются нормальное содержание и напряжение ки­слорода в артериальной крови, повышение их в венозной крови, снижение артериовенозной разницы по кислороду.

Перегрузочный тип

Причина: чрезмерная или длительная гиперфункция какого-либо органа или ткани. Чаще это наблюдается при тяжелой фи­зической работе.

Основные патогенетические звенья:значительная венозная гипоксемия;гиперкапния.

Субстратный тип

Причина: первичный дефицит субстратов окисления, как пра­вило, глюкозы. Так. прекращение поступления глюкозы в голов­ной мозг уже через 5-8 мин ведет к дистрофическим изменени­ям и гибели нейронов.

Основной патогенетический фактор - дефицит энергии в форме АТФ и недостаточное энергоснабжение клеток.

Смешанный тип

Причина: действие факторов, обусловливающих включение различных типов гипоксии. По существу любая тяжелая гипок­сия, особенно длительно текущая, является смешанной.

Морфология гипоксии

Гипоксия является важнейшим звеном очень многих патоло­гических процессов и болезней, а развиваясь в финале любых за­болеваний, она накладывает свой отпечаток на картину болезни. Однако течение гипоксии может быть различным, и поэтому как острая, так и хроническая гипоксия имеют свои морфологиче­ские особенности.

Острая гипоксия, которая характеризуется быстрым наруше­ниями в тканях окислительно-восстановительных процессов, на­растанием гликолиза, закислением цитоплазмы клеток и внекле­точного матрикса, приводит к повышению проницаемости мем­бран лизосом, выходу гидролаз, разрушающих внутриклеточные структуры. Кроме того, гипоксия активирует перекисное окисле­ние липидов. появляются свободнорадикальные перекисные со­единения, которые разрушают мембраны клеток. В физиологиче­ских условиях в процессе обмена веществ постоянно возникает

легкая степень гипоксии клеток, стромы, стенок капилляров и артериол. Это является сигналом к повышению проницаемости стенок сосудов и поступлению в клетки продуктов метаболизма и кислорода. Поэтому острая гипоксия, возникающая в условиях патологии, всегда характеризуется повышением проницаемости стенок артериол, венул и капилляров, что сопровождается плаз-моррагией и развитием периваскулярных отеков. Резко выражен­ная и относительно длительная гипоксия приводит к развитию фибриноидного некроза стенок сосудов. В таких сосудах крово­ток прекращается, что усиливает ишемию стенки и происходит диапедез эритроцитов с развитием периваскулярных кровоизлия­ний. Поэтому, например, при острой сердечной недостаточности, которая характеризуется быстрым развитием гипоксии, плазма крови из легочных капилляров поступает в альвеолы и возникает острый отек легких. Острая гипоксия мозга приводит к перива-скулярному отеку и набуханию ткани мозга с вклинением его стволовой части в большое затылочное отверстие и развитием ко­мы, приводящей к смерти.

Хроническая гипоксия сопровождается долговременной пере­стройкой обмена веществ, включением комплекса компенсатор­ных и приспособительных реакций, например гиперплазией кост­ного мозга для увеличения образования эритроцитов. В паренхи­матозных органах развивается и прогрессирует жировая дистро­фия и атрофия. Кроме того, гипоксия стимулирует в организме фибробластическую реакцию, активизируются фибробласты, в результате чего параллельно с атрофией функциональной ткани нарастают склеротические изменения органов. На определенном этапе развития заболевания изменения, обусловленные гипокси­ей, способствуют снижению функции органов и тканей с разви­тием их декомпенсации.



gastroguru © 2017