Гормоны мозгового вещества надпочечников, катехоламины. Катехоламины

Мозговой слой надпочечников продуцирует соединение далекой от стероидов структуры. Они содержат 3,4-диоксифенильное (катехоловое) ядро и называются катехоламинами. К ним относятся адреналин, норадреналин и дофамин (3-окситирамин).

Последовательность синтеза катехоламинов достаточно проста: тирозин -> диоксифенилаланин (ДОФА) —>дофамин —> норадреналин —> адреналин. Тирозин поступает в организм с пищей, но может и образовываться из фенилаланина в печени под действием фенилаланингидроксилазы. Конечные продукты превращения тирозина в тканях различны. В мозговом слое надпочечников процесс протекает до стадии образования адреналина, в окончаниях симпатических нервов — норадреналина, в некоторых нейронах центральной нервной системы синтез катехоламинов завершается образованием дофамина.

Превращение тирозина в ДОФА катализируется тирозингидроксилазой, кофакторами которой служат тетрагидробиоптерин и кислород. Считается, что именно этот фермент лимитирует скорость всего процесса биосинтеза катехоламинов и ингибируется конечными продуктами процесса. Тирозингидроксилаза является главным объектом регуляторных воздействий на биосинтез катехоламинов. Превращение ДОФА в дофамин катализируется ферментом ДОФА-декарбоксилазой (кофактор — пиридоксальфосфат), который относительно неспецифичен и декарбоксилирует и другие ароматические L-аминокислоты.

Однако имеются указания на возможность модификации синтеза катехоламинов за счет изменения активности и этого фермента. В некоторых нейронах отсутствуют ферменты дальнейшего превращения дофамина, и именно он является конечным продуктом. Другие ткани содержат дофамин-в-гидроксилазу (кофакторы — медь, аскорбиновая кислота и кислород), которая превращает дофамин в норадреналин. В мозговом слое надпочечников (но не в окончаниях симпатических нервов) присутствует фенилэтаноламин — метилтрансфераза, образующая из норадреналина адреналин.

Донором метальных групп в этом случае служит S-аденозилметионин. Важно помнить, что синтез фенилэтаноламин-N-мeтилтрансферазы индуцируется глюкокортикоидами, попадающими в мозговой слой из коркового по портальной венозной системе. В этом, возможно, и кроется объяснение факта объединения двух различных желез внутренней секреции в одном органе. Значение глюкокортикоидов для синтеза адреналина подчеркивается тем, что клетки мозгового слоя надпочечников, продуцирующие норадреналин, располагаются вокруг артериальных сосудов, тогда как адреналинпродуцирующие клетки получают кровь в основном из венозных синусов, локализованных в корковом слое надпочечников.

Распад катехоламинов протекает главным образом под влиянием двух ферментных систем: катехол-О-метилтрансферазы (КОМТ) и моноаминоксидазы (МАО). Главные пути распада адреналина и норадреналина схематически представлены на рис. 54. Под действием КОМТ в присутствии донора метиловых групп S-адренозилметионина катехоламины превращаются в норметанефрин и метанефрин (З-О-метил-производные норадреналина и адреналина), которые под влиянием МАО переходят в альдегиды и далее (в присутствии альдегидоксидазы) в ванилилминдальную кислоту (ВМК) — основной продукт распада норадреналина и адреналина. В том же случае, когда катехоламины вначале подвергаются действию МАО, а не КОМТ, они превращаются в 3,4-диоксиминдалевый альдегид, а затем под влиянием альдегидоксидазы и КОМТ — в 3,4-диоксиминдальную кислоту и ВМК. В присутствии алкогольдегидрогеназы из катехоламинов может образовываться З-метокси-4-оксифенилгликоль, являющийся основным конечным продуктом деградации адреналина и норадреналина в ЦНС.


Рис. 54. Метаболизм катехоламинов.
КОМТ — катехол-О-метилтрансфераза; МАО — моноаминоксидаза; АО — альдегидоксидаза; АД — алкогольдегидрогеназа.


Распад дофамина протекает аналогично, за тем исключением, что его метаболиты лишены гидроксильной группы у в-углеродного атома, и поэтому вместо ВМК образуется гомованилиновая (ГВК) или З-метокси-4-оксифенилуксусная кислота.

Постулируется также существование хиноидного пути окисления молекулы катехоламинов, на котором могут возникать промежуточные продукты, обладающие выраженной биологической активностью.

Образующиеся под действием цитозольных ферментов норадреналин и адреналин в окончаниях симпатических нервов и мозговом слое надпочечников поступают в секреторные гранулы, что предохраняет их от действия ферментов деградации.

Захват катехоламинов гранулами требует энергетических затрат. В хромаффинных гранулах мозгового слоя надпочечников катехоламины прочно связаны с АТФ (в отношении 4:1) и специфическими белками — хромогранинами, что предотвращает диффузию гормонов из гранул в цитоплазму. Непосредственным стимулом к секреции катехоламинов является, по-видимому, проникновение в клетку кальция, стимулирующего экзоцитоз (слияние мембраны гранул с клеточной поверхностью и их разрыв с полным выходом растворимого содержимого — катехоламинов, дофамин-р-гидроксилазы, АТФ и хромогранинов — во внеклеточную жидкость).

Некоторые гормоны человека и связь эндокринной системы с нервной системой представлены на рис. 13.2. Под прямым контролем нервной системы находятся мозговое вещество надпочечников и гипоталамус; другие эндокринные железы связаны с нервной системой опосредованно, через гормоны гипоталамуса и гипо­ физа. В клетках гипоталамуса синтезируются особые пептиды - либерины (рили- зинг-гормоны). В ответ на возбуждение определенных центров мозга либерины освобождаются из аксонов нервных клеток гипоталамуса, оканчивающихся в ги­ пофизе, и стимулируют синтез и выделение тропных гормонов клетками гипофи­ за. Наряду с либеринами, в гипоталамусе вырабатываются статины, ингибирую­ щие синтез и секрецию гормонов гипофиза.

Центральная нервная система

Н ер в н ы е с в язи

Н ер в н ы е св язи ___

Гипоталамус

Антидиуре-

тический

Окситоцип

Мышцы матки,

молочных желез

Меланоцит-

стимулирую-

Меланоциты

щий гормон

Пролактии

Молочные железы

Соматотропин

Лютсинизи-

Фолликуло-

Кортикотропин

Тиротропин

стимулирующий

Мозговое

Щитовидная

Семенники

вещество

надпочечников

надпочечников

АДРЕНАЛИН

КОРТИЗОЛ

ТИРОКСИН ЭСТРОГЕНЫ

АНДРОГЕНЫ

Рис. 13.2. Связи эндокринной и нервной систем. Сплошные стрелки обозначают синтез и секрецию гормона, пунктирные - влияние гормона на органы-мишени

Классификация гормонов по биологическим функциям в известной степени условна, поскольку многие гормоны полифункциональны. Например, адреналин и норадреналин регулируют не только обмен углеводов и жиров, но и частоту сер­ дечных сокращений, сокращение гладких мышц, кровяное давление. В частности, по этой причине многие гормоны, особенно паракринные, не удается классифи­ цировать по биологическим функциям.

Изменения концентрации гормонов в крови

Концентрация гормонов в крови низкая, порядка IO6-IO JJ моль/л. Время полужизни в крови измеряется минутами, для некоторых гормонов - десятками минут, реже - часами. Увеличение концентрации гормона в крови при действии соот­ ветствующего стимула зависит от увеличения скорости синтеза гормона или ско­ рости секреции уже имеющегося в эндокринной клетке гормона.

Стероидные гормоны представляют собой липофильные вещества, легко про­ никающие через клеточные мембраны. Поэтому они не накапливаются в клетках, и повышение их концентрации в крови определяется увеличением скорости син­ теза.

Пептидные гормоны выделяются в кровь при участии специальных механиз­ мов секреции. Эти гормоны после их синтеза включаются в секреторные грану­ лы - мембранные пузырьки, образующиеся в пластинчатом комплексе; гормон ос­ вобождается в кровь путем слияния гранулы с плазматической мембраной клетки (экзоцитоз). Синтез гормонов происходит быстро (например, молекула проинсу­ лина синтезируется за 1-2 мин), в то время как образование и созревание секре­ торных гранул требуют большего времени - 1-2 ч. Запасание гормона в секретор­ ных гранулах обеспечивает быструю реакцию организма на действие стимула: сти­ мул ускоряет слияние гранул с мембраной и освобождение запасенного гормона в кровь.

Синтез стероидных гормонов

Строение и синтез многих гормонов описаны в предыдущих разделах. Стероидные гормоны представляют собой группу соединений, родственных по происхожде­ нию и структуре: все они образуются из холестерина. Промежуточными продук­ тами при синтезе стероидных гормонов служат прегненолон и прогестерон (рис. 13.3). Они образуются во всех органах, синтезирующих любые стероидные гор­ моны. Далее пути превращения расходятся: в коре надпочечников образуются кор­ тизол (глюкокортикостероид) и альдостерон (минералокортикостероид) (С,-сте- роиды), в семенниках - мужские половые гормоны (С19-стероиды), в яичниках женские половые гормоны (С18-стероиды). За большинством стрелок на схеме скрывается не одна, а от двух до четырех реакций. Кроме того, возможны альтер­ нативные пути синтеза некоторых гормонов. В целом пути синтеза стероидных гормонов образуют довольно сложную сетку реакций. Многие промежуточные продукты этих путей также обладают некоторой гормональной активностью. Од­ нако основными стероидными гормонам служат кортизол (регуляция обмена угле­ водов и аминокислот), альдостерон (регуляция водно-солевого обмена), тестосте­ рон, эстрадиол и прогестерон (регуляция репродуктивных функций).

В результате инактивации и катаболизма стероидных гормонов образуется зна­ чительное количество стероидов, содержащих кетогруппу в положении 17 (17-ке- тостероиды). Эти вещества выводятся через почки. Суточная экскреция 17-кетос- тероидов у взрослой женщины составляет 5-15 мг, у мужчин - 10-25 мг. Опреде­ ление 17-кетостероидов в моче используется для диагностики: их выделение увеличивается при болезнях, сопровождающихся гиперпродукцией стероидных гормонов, и уменьшается при гипопродукции.

Прогестерон (C21) Альдостерон (C21)

Рис. 13.3. Пути синтеза стероидных гормонов:

1,2 - в коре надпочечников, семенниках и яичниках;3, 4 - в коре надпочечников; 5 - в семенниках и яичниках;6 - в яичниках

Паракринные гормоны

Цитокины

Цитокины - это сигнальные молекулы паракринного и аутокринного действия; в крови в физиологически активной концентрации практически не бывают (исклю­ чение - интерлейкин-1). Известны десятки разных цитокинов. К ним относятся интерлейкины (лимфокины и монокины), интерфероны, пептидные факторы рос­ та, колониестимулирующие факторы. Цитокины представляют собой гликопротеи­ ны, содержащие 100-200 аминокислотных остатков. Большинство цитокинов обра­ зуется и действует во многих типах клеток и реагирует на разные стимулы, включая механическое повреждение, вирусную инфекцию, метаболические нарушения и др. Исключение составляют интерлейкины (ИЛ-1 а и ИЛ-1Р) - их синтез регулирует­ ся специфическими сигналами и в небольшом количестве типов клеток.

Цитокины действуют на клетки через специфические мембранные рецепторы и протеинкиназные каскады, в результате активируются факторы транскрипции - энхансеры или сайленсеры, белки, которые транспортируются в ядро клетки, на­ ходят специфическую последовательность ДНК в промоторе гена, являющегося мишенью данного цитокина, и активируют или подавляют транскрипцию гена.

Цитокины учас твуют в регуляции пролиферации, дифференцировки, хемотак­ сиса, секреции, апоптоза, воспалительной реакции. Трансформирующий фактор роста (ТФР-р) стимулирует синтез и секрецию компонентов межклеточного мат­ рикса, рост и пролиферацию клеток, синтез других цитокинов.

Цитокины имеют перекрывающуюся, но все же разную биологическую актив­ ность. Клетки разных типов, или разной степени дифференцированности, или находящиеся в разном функциональном состоянии могут по-разному реагировать на один и тот же цитокин.

Эйкозаноиды

Арахидоновая кислота, или эйкозатетраеновая, 20:4 (5, 8, 11, 14), дает начало боль­ шой группе паракринных гормонов - эйкозаноидов. Арахидоновая кислота, по­ ступающая с пищей или образующаяся из линолевой кислоты, включается в состав мембранных фосфолипидов и может освобождаться из них в результате действия фосфолипазы А.. Далее в цитозоле образуются эйкозаноиды (рис. 13.4). Различают три группы эйкозаноидов: простагландины (PG), тромбоксаны (TX), лейкотриены (LT). Эйкозаноиды образуются в очень малых количествах, и имеют, как правило, короткое время жизни - измеряемое минутами или даже секундами.

Лейкотриены

Рис. 13.4. Синтез и строение некоторых эйкозаноидов:

1 - фосфолипаза A2;2 - циклооксигеназа

В разных тканях и разных ситуациях образуются неодинаковые эйкозаноиды. Функции эйкозаноидов многообразны. Они вызывают сокращение гладких мышц и сужение кровеносных сосудов (PGF2Ct, синтезируется почти во всех органах) или, наоборот, - расслабление гладких мышц и расширение сосудов (PGE2, син­ тезируется тоже в большинстве органов). PGI2 синтезируется в основном в эндо­ телии сосудов, подавляет агрегацию тромбоцитов, расширяет сосуды. Тромбоксан TXA2 синтезируется в основном в тромбоцитах и действует тоже на тромбоциты - стимулирует их агрегацию (аутокринный механизм) в области повреждения сосу­ да (см. гл. 21). Он же, тромбоксан TXA2, сужает сосуды и бронхи, действуя на глад­ комышечные клетки (паракринный механизм).

Эйкозаноиды действуют на клетки-мишени через специфические мембранные рецепторы. Соединение эйкозаноида с рецептором включает механизм образова­ ния второго (внутриклеточного) вестника сигнала; им могут быть цАМФ, цГМФ, инозитолтрисфосфат, ионы Ca2+. Эйкозаноиды, наряду с другими факторами (гис­ тамин, интерлейкин-1, тромбин и др.), участвуют в развитии воспалительной ре­ акции.

Воспаление - естественная реакция на повреждение тканей, начальное звено заживления. Однако иногда воспаление бывает чрезмерным или слишком продол­ жительным, и тогда оно само становится патологическим процессом, болезнью, и требует лечения. Для лечения таких состояний применяют ингибиторы синтеза эйкозаноидов. Кортизол и его синтетические аналоги (дексаметазон и др.) инду­ цируют синтез белков липокортинов, которые ингибируют фосфолипазу A2 (см. рис. 13.4). Аспирин (нестероидное противовоспалительное средство) ацетилирует и инактивирует циклооксигеназу (рис. 13.6).

Рис. 13.6. Инактивация циклооксигеназы аспирином

Катехоламиновые гормоны - дофамин, норадреналин и адреналин - представляют собой 3,4-дигидроксипроизводные фенилэтиламина. Они синтезируются в хромаффинных клетках мозгового слоя надпочечников. Свое название эти клетки получили потому, что содержат гранулы, окрашивающиеся под действием бихромата калия в краснокоричневый цвет. Скопления таких клеток обнаружены также в сердце, печени, почках, половых железах, адренергических нейронах постганглионарной симпатической системы и в центральной нервной системе.

Главный продукт мозгового слоя надпочечников-адреналин. На долю этого соединения приходится примерно 80% всех катехоламинов мозгового слоя. Вне мозгового вещества адреналин не образуется. В отличие от него норадреналин, обнаруживаемый в органах, иннервируемых симпатическими нервами, образуется преимущественно in situ (~ 80% общего количества); остальная часть норадреналина также образуется главным образом в окончаниях нервов и достигает своих мишеней с кровью.

Превращение тирозина в адреналин включает четыре последовательных этапа: 1) гидроксилирование кольца, 2) декарбоксилирование, 3) гидроксилирование боковой цепи и 4) N-метилирование. Путь биосинтеза катехоламинов и участвующие в нем ферменты представлены на рис. 49.1 и 49.2.

Тирозин - гид роксилаза

Тирозин - непосредственный предшественник катехоламинов, а тирозин-гидроксилаза лимитирует скорость всего процесса биосинтеза катехоламинов. Этот фермент встречается как в свободном виде, так и в связанной с субклеточными частицами форме. С тетрагидроптеридином в качестве кофактора он выполняет оксидоредуктазную функцию, превращая L-тирозин в L-дигидроксифенилаланин (-ДОФА). Существуют различные пути регуляции тирозин-гидроксилазы как скорость - лимитирующего фермента. Наиболее важный из них заключается в ингибировании катехоламинами по принципу обратной связи: катехоламины конкурируют с ферментом за птеридиновый кофактор, образуя с последним шиффово основание. Тирозин-гидроксилаза, кроме того, конкурентно ингибируется рядом производных тирозина, в том числе а-метилтирозином. В некоторых случаях это соединение используют для блокады избыточной продукции катехоламинов при феохромоцитоме, однако существуют более эффективные средства, обладающие к тому же менее выраженным побочным действием. Соединения еще одной группы подавляют активность тирозин-гидроксилазы, образуя комплексы с железом и удаляя таким путем имеющийся кофактор. В качестве примера такого соединения можно привести а, -дипиридил.

Катехоламины не проникают через гемато-энцефалический барьер, и, следовательно, их присутствие в мозге должно объясняться местным синтезом. При некоторых заболеваниях центральной нервной системы, например болезни Паркинсона, наблюдаются нарушения синтеза дофамина именно в мозге. Предшественник дофамина

Рис. 49.1. Биосинтез катехоламинов. ONMT- фенилэтаноламин-Ы-метилтрансфераза. (Modified and reproduced, with permission, from Goldfien A. The adrenal medulla. In: Basic and Clinical Endocrinology, 2nd ed. Greenspan FS, Forsham PH . Appleton and Lange, 1986.)

ФА - легко преодолевает гематоэнцефалический барьер и поэтому служит эффективным средством лечения болезни Паркинсона.

ДОФА-декарбоксилаза

В отличие от тирозин-гидроксилазы. обнаруживаемой лишь в тканях, способных синтезировать катехоламины, ДОФА-декарбоксилаза присутствует во всех тканях. Этому растворимому ферменту требуется пиридоксальфосфат для превращения -ДОФа в -дигидроксифенилэтиламин (дофамин). Реакция конкурентно ингибируется соединениями, напоминающими -ДОФА, например а-метил-ДОФА. Галоидзамешенные соединения образуют с -ДОФА шиффово основание и также ингибируют реакцию декарбоксилирования.

а-Метил-ДОФА и другие родственные соединения, такие, как -гидрокситирамин (образующийся из тирамина), а-метилирозин и метараминол, с успехом используются для лечения некоторых форм гипертонии. Антигипертензивное действие этих метаболитов обусловлено, по-видимому, их способностью стимулировать а-адренергические рецепторы (см. ниже) кортикобульбарной системы в центральной нервной системе, что приводит к уменьшению активности периферических симпатических нервов и снижению артериального давления.

Дофамин-b-гидроксилаза

Дофамин-b-гидроксилаза (ДБГ) - оксидаза со смешанной функцией, катализирующая превращение дофамина в норадреналин. ДБГ использует аскорбат в качестве донора электронов, а фумарат - в качестве модулятора; в активном центре фермента содержится медь. ДБГ клеток мозгового слоя надпочечников локализуется, вероятно, в секреторных гранулах. Таким образом, превращение дофамина в норадреналин происходит в этих органеллах. ДБГ высвобождается из клеток мозгового слоя надпочечников и нервных окончаний вместе с норадреналином, но (в отличие от последнего) не подвергается обратному захвату нервными окончаниями.

Фенилэтаноламин-N-метилтрансфераза

Растворимый фермент фенилэтаноламин - -метилтрансфераза (ФКМТ) катализирует -метилирование норадреналина с образованием адреналина в адреналин-продуцирующих клетках мозгового слоя надпочечников. Поскольку данный фермент растворим, можно предположить, что превращение норадреналина в адреналин происходит в цитоплазме. Синтез ФЫМТ стимулируется глюкокор-тикоидными гормонами, проникающими в мозговой слой по внутринадпочечниковой портальной системе. Эта система обеспечивает в 100 раз большую концентрацию стероидов в мозговом слое, чем в системной артериальной крови. Столь высокая их концентрация в надпочечниках, по-видимому, необходима для индукции

поиск специалиста или услуги: Аборты Акушер Аллерголог Анализы Андролог БРТ Ведение беременности Вызов врача на дом Гастроэнтеролог Гематолог Генная диагностика Гепатолог Гинеколог Гирудотерапевт Гомеопат Дерматолог Детский врач Диагностика организма Диетолог Диспансеризация Дневной стационар Забор анализов на дому Забор биоматериала Иглорефлексотерапевт Иммунолог Инфекционист Кардиолог Кинезитерапевт Косметолог Логопед Маммолог Мануальный терапевт Массажист Медицинские книжки Медицинские справки Миколог МРТ Нарколог Невролог Нейрофизиолог Нейрохирург Нетрадиционная медицина Нефролог Онколог Ортопед Остеопат Отоларинголог, ЛОР Офтальмолог, Окулист Очищение организма Паразитолог Педиатр Перевозка больных Пластический хирург Прививки, вакцинация Проктолог Профосмотры Процедурный кабинет Психиатр Психолог Психотерапевт Пульмонолог Реабилитолог Реаниматолог Ревматолог Рентген Репродуктолог Рефлексотерапевт Сексолог Скорая помощь Справка для ГИБДД Срочные исследования Стационар Стоматолог Суррогатное материнство Терапевт Травматолог Травмпункт Трихолог УЗДГ УЗИ Уролог Физиотерапевт Флеболог Флюорография Функциональная диагностика Хирург ЭКГ ЭКО Эндокринолог Эпиляция

Поиск по станции метро Москвы: Авиамоторная Автозаводская Академическая Александровский сад Алексеевская Алтуфьево Аннино Арбатская Аэропорт Бабушкинская Багратионовская Баррикадная Бауманская Беговая Белорусская Беляево Бибирево Библиотека имени Ленина Битцевский парк Борисово Боровицкая Ботанический сад Братиславская Бульвар Адмирала Ушакова Бульвар Дмитрия Донского Бунинская аллея Варшавская ВДНХ Владыкино Водный стадион Войковская Волгоградский проспект Волжская Волоколамская Воробьёвы горы Выставочный центр Выхино Деловой центр Динамо Дмитровская Добрынинская Домодедовская Достоевская Дубровка Зябликово Измайловская Калужская Кантемировская Каховская Каширская Киевская Китай-город Кожуховская Коломенская Комсомольская Коньково Красногвардейская Краснопресненская Красносельская Красные ворота Крестьянская застава Кропоткинская Крылатское Кузнецкий мост Кузьминки Кунцевская Курская Кутузовская Ленинский проспект Лубянка Люблино Марксистская Марьина роща Марьино Маяковская Медведково Международная Менделеевская Митино Молодёжная Мякинино Нагатинская Нагорная Нахимовский проспект Новогиреево Новокузнецкая Новослободская Новые Черёмушки Октябрьская Октябрьское поле



06.02.2013


Катехоламины и нейромедиаторный обмен

Катехоламины - это физиологически активные вещества, которые являются медиаторами (норадреналин, дофамин, серотонин) и гормонами (адреналин, норадреналин). Основные регуляторные функции катехоламинов осуществляются через мозговое вещество надпочечников и специализированные адренергические нейроны.

Все высшие формы поведения человека связаны с жизнедеятельностью нервных клеток, синтезирующих катехоламины. Нейроны используют катехоламины в качестве нейромедиаторов (посредников), осуществляющих передачу нервного импульса.

Обмен катехоламинов в организме является ключевым звеном, как в умственной, так и в физической работоспособности, как в скорости мышления, так и в его качестве. Творческие способности: способность к абстрактному и художественному мышлению, к анализу и синтезу напрямую зависят от катехоламинового обмена. От активности синтеза и выделения катехоламинов зависят такие сложные процессы, как запоминание и воспроизведение информации, агрессивная реакция, настроение, эмоциональность, уровень общего энергетического потенциала, сексуальное поведение и т.д. Чем больше количество синтезируемых и выделяемых катехоламинов, тем выше настроение, работоспособность, общий уровень активности, скорость мышления. Катехоламины оказывают мобилизующее действие на энергетические резервы нервных клеток. Они активизируют окислительно-восстановительные процессы в организме, «запускают» сгорание источников энергии - в первую очередь углеводов, затем жиров и белков.

Самый высокий уровень катехоламинов (на единицу массы тела) у детей. Дети отличаются от взрослых прежде всего очень высокой эмоциональностью и подвижностью, способностью к быстрому переключению мышления. У детей хорошая память, высокая обучаемость и работоспособность.

С возрастом синтез катехоламинов как в центральной нервной системе, так и на периферии замедляется, что, вероятно, связано со старением клеточных мембран, общим снижением синтеза белков в организме. В результате снижения уровня катехоламинов в организме скорость мыслительных процессов уменьшается, ухудшается настроение, усиливается депрессия.

Катехоламины прямо или косвенно повышают активность эндокринных желез, стимулируют гипоталамус и гипофиз. При любой напряженной работе, особенно физической, содержание в крови катехоламинов увеличивается. Это приспособительная реакция организма к нагрузке любого рода. И чем более выражена реакция, тем лучше организм приспосабливается, тем быстрее достигается состояние тренированности. При интенсивной физической работе повышение температуры тела, учащение сердцебиения и др. вызвано выделением в кровь большого количества катехоламинов.

В настоящее время известны следующие катехоламины:
- адреналин
- норадреналин
- дофамин
- серотонин

Среди катехоламинов нейромедиаторами мозга являются:
- норадреналин
- серотонин
- дофамин

Адреналин - гормон, вырабатываемый надпочечниками. Его называют «гормоном страха» из-за того, что при испуге, ввиду сильного выброса адреналина в кровь, сердце часто начинает биться. Выброс адреналина происходит при любом сильном волнении или большой физической нагрузке. Адреналин повышает проницаемость клеточных мембран для глюкозы, усиливает распад углеводов (гликогена) и жиров, вызывает сужение сосудов органов брюшной полости, кожи и слизистых оболочек; в меньшей степени сужает сосуды скелетной мускулатуры. Артериальное давление под действием адреналина повышается. Если человек испуган или взволнован, то его выносливость резко повышается. Адреналин - активный допинг человеческого организма. Чем больше в надпочечниках резервы адреналина, тем выше физическая и умственная работоспособность.

Норадреналин - представляет собой катехоламин, который продуцируют преимущественно клетки мозгового вещества надпочечников и симпатической нервной системы. Его секреция и выброс в кровь усиливаются при стрессе, кровотечениях, тяжелой физической работе и других ситуациях, требующих быстрой перестройки организма. Так как норадреналин оказывает сильное сосудосуживающее действие, его выброс в кровь играет ключевую роль в регуляции скорости и объема кровотока. В отличие от адреналина, норадреналин называют «гормоном ярости», т.к. в результате выброса в кровь норадреналина всегда возникает реакция агрессии, значительно увеличивается мышечная сила. Если от адреналина лицо человека бледнеет, то от норадреналина - краснеет.

Дофамин - один из медиаторов возбуждения в синапсах центральной нервной системы. Дофамин синтезируется в специализированных нейронах мозга, ответственных за регуляцию его важнейших функций. В биосинтезе дофамин является предшественником норадреналина. Он вызывает повышение сердечного выброса, оказывает сосудорасширяющее действие, улучшает кровоток и др. Стимулируя распад гликогена и подавляя утилизацию глюкозы тканями, дофамин вызывает повышение концентрации глюкозы в крови. Он участвует в регуляции образования гормона роста, в торможении секреции пролактина. Недостаточный синтез дофамина обусловливает нарушение двигательной функции - синдромПаркинсона. Резкое повышение экскреции дофамина и его метаболитов с мочой наблюдается при гормонально-активных опухолях. При гиповитаминозе витамина В6 в тканях головного мозга увеличивается содержание дофамина, появляются его метаболиты, которые отсутствуют в норме.

Серотонин - катехоламин, содержащийся, главным образом, в тромбоцитах. При этом около 90% этого вещества синтезируется и хранится в специальных клетках желудочно-кишечного тракта, откуда серотонин поступает в кровь и депонируется тромбоцитами. Серотонин вызывает агрегацию тромбоцитов, оказывает существенное влияние на синтез биологически активных веществ в гипоталамусе, воздействует на функционирование желез внутренней секреции.

В клинической практике определение уровня серотонина в крови наиболее информативно при злокачественных новообразованиях желудка, кишечника и легких, при которых данный показатель превышает норму в 5-10 раз. При этом в моче выявляется повышенное содержание продуктов метаболизма серотонина. После радикального оперативного лечения опухоли происходит полная нормализация этих показателей, в связи с чем, исследование в динамике уровня серотонина в крови и в суточной моче позволяет оценить эффективность проведенной терапии и выявить рецидивы или метастазирование. Другими возможными причинами увеличения концентрации серотонина в крови и в моче являются рак щитовидной железы, острая кишечная непроходимость, острый инфаркт миокарда и др.

Снижение уровня серотонина наблюдается при лейкозах, гиповитаминозе В6, синдроме Дауна и др.

Современные лаборатории предлогают комплекс исследований по выявлению нарушений катехоламинового обмена.

При исследовании катехоламинов информативным является не только определение их уровня в плазме крови, но и экскреция с мочой. Однако необходимо отметить, что каждый из методов имеет свои недостатки. Так, в крови происходит достаточно быстрая элиминация катехоламинов, и достоверные результаты можно получить, если взятие крови для данного исследования производиться в момент четких клинических проявлений (гипертонический криз и др.), что на практике не всегда осуществимо.

Определение катехоламинов в моче может быть недостаточно информативно, если у пациента наблюдается нарушении функции почек. Поэтому наиболее оптимальный вариант: исследование адреналина и норадреналина в крови с одновременным определением их экскреции в моче.

Определяют концентрацию в плазме крови и в моче не только вышеперечисленные катехоламины, но и их метаболиты:

VМА (ваниллилминдальная кислота) - основной метаболит адреналина и норадреналина;
- НVА (гомованиллиновая кислота) - основной метаболит дофамина;
- 5-НIАА (5-гидроксииндолуксусная кислота) - основной метаболит серотонина.

Выявление уровня катехоламинов в динамике позволяет не только диагностировать такие заболевания как феохромоцитома (злокачественная опухоль надпочечников), необластома, синдром Паркинсона, установить причины артериальной гипертензии и гипотензии, недостаточности кровообращения, нарушения ритма сердца, стенокардии, инфаркта миокарда, но и осуществлять контроль за эффективностью проводимой терапии.

Сильные стрессы, психические нагрузки снижают содержание катехоламинов в центральной нервной системе. С помощью клинико-диагностических методов можно проводить контроль за эффективностью лечения антидепрессантами и нейролептиками при психической депрессии.

Во время сильных стрессов (в том числе и при больших физических нагрузках) происходит массированный выброс катехоламинов из депо. Иногда такой выброс достигает таких степеней, что депо катехоламинов истощается, и нервная клетка сама уже не может восполнить их дефицит. Нет ничего хуже истощения запасов катехоламинов в центральной нервной системе («истощение нервной системы»), т.е. истощение катехоламиновых депо в нервных клетках. В этом случае на человека обрушивается множество различных болезней. Он быстро стареет, т.к. без достаточного содержания в организме катехоламинов не происходит самообновления клеточных структур.

Восстановление резервов центральной нервной системы без рациональной лекарственной терапии невозможно. Есть несколько способов восстановления резервов катехоламинов в нервных клетках:

1. Введение малых доз катехоламинов;

2. Введение в организм предшественников катехоламинов;

3. Введение препаратов, усиливающих синтез катехоламинов в центральной нервной системе.

Почти все известные в настоящее время катехоламины причислены к допингам. Допингами считаются не только такие вещества, как адреналин, парадреналин и дофамин. К допингам причислены амфетамины, значительно повышающие выносливость и использующиеся особенно широко в тех видах спорта, где необходимы выносливость, быстрота реакции и т.п.; эфедрин, хорошо сжигающий жировую ткань, но при этом не затрагивающий мышечную, и другие катехоламины.

Современная фармакология достигла очень многого, с ее помощью мы можем вмешиваться как в синтез отдельных катехоламинов, так и в активность всей симпатико-адреналовой системы в целом. Повышая активность катехоламиновых систем, мы можем добиваться такого повышения спортивной работоспособности, о котором раньше можно было только мечтать. Некоторые катехоламины в малых дозах обладают анаболическим эффектом, способствуя наращиванию мышечной массы и силы.

Клинико-диагностическая лаборатория «ДиаЛаб» предлагает спортсменам и лицам, серьезно занимающимся спортом, провести мониторинг катехоламинового обмена с целью правильного распределения тренировочных нагрузок и предотвращения истощения катехоламиновых резервов.

в продолжение темы статьи:
тематические метки:

Термин «катехоламины» относится к веществам, которые содержат катехол (орто- дигидроксибензол) и цепь с аминогруппой - катехоловое ядро. Эпинефрин (адреналин) синтезируется в мозговом веществе надпо­чечников и высвобождается в системный кровоток. Норэпинефрин (норадреналин) образуется также в периферических симпатических нервах. Допамин, предшественник норэпинефрина, обнаруженный в мозговом веществе и периферических симпа­тических нервах, действует напрямую как нейромедиатор в ЦНС.

Катехоламины изменяют сердечно-сосудистые и метаболические показатели: уве­личивают частоту сердечных сокращений, артериальное давление, сократимость миокарда и проводимость в нем.

Адренорецепторы

Специфические рецепторы опосредуют биологическое действие. Три типа адренорецепторов и их рецепторные подтипы объясняют различные физиологические реакции на экзогенные и эндогенные катехоламины.

1-Адренорецепторы - постсинаптические рецепторы, опосредующие сокращение гладкой мускулатуры, их стимуляция вызывает вазоконстрикцию и увеличение давления.

2-Адренорецепторы располагаются на пресинаптических симпатических нервных окончаниях, угнетают высвобождение норэпинефрина, стимуляция вызывает угнетение центральной симпатической импульсации и снижает давление.

Существует три основных подтипа?-адренорецепторов.

1-адренорецептор опосредует действие на сердце и в большей степени реа­гирует на изопротеренол, чем на адреналин или норадреналин, стимуляция?-адренорецепторов вызывает положительный инотропный эффект, хронотропный эффект на сердце, увеличение секреции ренина в почках и липолиз в адипоцитах.

2-адренорецептор опосредует расслабление мышц бронхов, сосу­дов и матки, стимуляция вызывает брокходилатацию, вазодилатацию в скелетных мышцах, гликогенолиз и увеличение освобождения норадреналина из окончаний симпатических нервов.

3-адренорецепторы регулируют расход энергии и липолиз.

D1-рецепторы дофамина располагаются в головном мозге, коронарных сосудах, стимуляция вызывает вазодилатацию данного сосудистого бассейна.

D2-рецепторы дофамина (пресинаптические) локализуются в окончаниях сим­патических нервов, симпатических ганглиях и головном мозге, стимуляция угнетает высвобождение норэпинефрина, передачу импульсов в ганглиях и высво­бождение пролактина.

Большинство клеток имеют адренергические рецепторы. Разработка селективных адреномиметиков и адреноблокаторов позволила развить фармакотерапию различных заболеваний. Например, ?-адреноблокаторы (например, атенолол и метопролол) служат стандартными препаратами для лечения , гипертензии и . Введение?-адреномиметиков (тербуталина и сальбутамола) вызывает расслабление гладкой мускулатуры бронхов, эти препараты часто назначаются для ингаляции при лечении астмы.

Синтез катехоламинов

Эти гормоны синтезируются из тирозина путем гидроксилирования и декарбоксилирования. Тирозин поступает из потребляемой пищи или синтези­руется из фенилаланина в печени и поступает в нейроны, хромаффинные клетки благодаря активному транспорту. Он превращается в 3,4-дигидроксифенилаланин (дофа) под действием тирозин гидроксилазы, это скорость-лимитирующий этап в синтезе катехоламинов. Увеличение внутриклеточной концентрации катехолов ока­зывает подавляющее действие на активность тирозин гидроксилазы; поскольку кате­холамины высвобождаются из секреторных гранул в ответ на стимул, катехоламины в цитоплазме истощаются, устраняется их угнетающее влияние на тирозин гидроксилазу. Транскрипция тирозин гидроксилазы стимулируется глюкокортикоидами, цАМФ-зависимой протеинкиназой, кальций/фосфолипидзависимой протеинкиназой и кальций/кальмодулинзависимой протеинкиназой. а-Метил-паратирозин (метирозин) служит ингибитором тирозин гидриксилазы, его возможно применять для лече­ния пациентов с катехолсекретирующими опухолями.

Декарбоксилаза ароматических аминокислот (ДААК) катализирует декарбоксилирование дофа с образованием допамина, который активно транс­портируется в гранулы для гидроксилирования в норадреналинин медьсодержащим ферментом допамин-гидроксилазой. Аскорбиновая кислота служит кофактором и донором водорода. Фермент структурно схож с тирозин гидроксилазой и может иметь общие транскрипционные регуляторные элементы, оба фермента стимулиру­ются глюкокортикоидами и цАМФ-зависимыми киназами. Эти реакции происходят в синаптических пузырьках (везикулах, гранулах) адренергических нейронов ЦНС, периферической нервной системы, хромаффинных клетках. Основные компоненты везикул - допамин, ?-гидроксилаза, аскор­биновая кислота, хромогранин А и аденозина трифосфата (АТФ). В мозговом веществе норэпинефрин высобождается в цитоплазму, где цитолитический фермент фенилэтаноламин-металтрансфераза превращается его в эпинефрин, затем транспортируемый в другие запасающие везикулы. Реакция метилирования регули­руется глюкокортикоидами, в высокой концентрации присутствующими в мозговом веществе, с помощью кортикомедуллярной портальной системы. Таким образом, катехолсекретирующие опухоли, секретирующие преимущественно эпинефрин, располагаются в мозговом веществе. В нормальном мозгового вещества примерно 80% высвобождающихся катехолами­нов представлено адреналином.

Депонирование и секреция катехоламинов

Катехоламины обнаруживают в мозговом веществе, органах, иннер­вируемых симпатическими нервами. Катехоламины запасаются в гранулах, также содержащих АТФ, нейропептиды [например, адреномедуллин, адренокортикотропин (АКТГ), вазоактивный интести­нальный пептид], кальций, магний и хромогранин. Поглощение в запасающие гранулы облегчается активным транспортом с помощью транспортеров моноаминов везикул (ТМАВ). АТФ-зависимый насос ТМАВ поддерживает значительный электриче­ский градиент. Для транспортировки каждого моноамина АТФ гидролизуется, а два иона водорода транспортируются из везикулы в цитозоль.

Стрессовые стимулы (например, инфаркт миокарда, анестезия, гипогликемия) запу­скают секрецию катехоламинов. Ацетилхолин из преганглионарных симпатических воликон стимулирует никотиновые холинергические рецепторы и вызывает деполяризацию хромаффинных клеток. Деполяризация запускает активацию потенциалзависимых кальциевых каналов, что приводит к экзоцитозу содержимого секреторных гранул. Кальцийзависимый рецептор участвует в процессе экзоцитоза. Во время экзоцитоза все содержимое гранулы высвобождается вне клеток. Норадреналин регулирует собственное высвобождение путем активации а-адренорецепторов на пресинаптической мембране. Стимуляция пресинаптических а2-адренорецепторов угнетает высвобождение норэпинефрина (такой механизм действия некоторых анти- гипертензивных препаратов, например, клонидина и гуанфацина).

Катехоламины - самые короткоживушие сигнальные молекулы, исхо­дный период полувыведения катехоламинов из крови составляет от 10 до 100 с. Примерно половина катехоламинов циркулирует в плазме в непрочно связанном с альбумином виде. Таким образом, концентрация катехоламинов колеблется в широких пределах.

Метаболизм катехоламинов

Катехоламины удаляются из крови как путем обратного захвата окончания­ми симпатических нервов, так и путем метаболизма с помощью двух ферментных путей с последующей конъюгацией и экскрецией почками. Большая часть катехоламинов метаболизируется в тех же клетках, где они синтези­руются. Почти 90% катехоламинов, высвобождаемых синапсами, подверга­ется поглощению нервными окончаниями (поглощение-1). Поглощение-1 может блокироваться кокаином, трициклическими антидепрессантами и фенотиазинами. Экстраневральные ткани также поглощают катехоламины, что обозначают как поглощение-2. Подавляющая часть катехоламинов метаболизируется (КОМТ) катехол-О-метилтрансферазой.

Хотя КОМТ обнаруживается преимущественно за пределами нерв­ной ткани, О-метилирование в мозговом веществе служит преоб­ладающим источником метанефрина (КОМТ превращает эпинефрин в метанефрин) и основным источником норметанефрина (КОМТ превращает норэпинефрин в норметанефрин) путем метилирования 3-гидроксильной группы. Для этого про­цесса необходим аденозилметионин, используемый как донор метильной группы, и кальций. Метанефрин и норметанефрин окисляется МАО до ванилилминдальной кислоты (ВМК) путем окислительного дезаминирования. МАО также может окислять адреналин и норадреналин до 3,4-дигицроксиминдальной кислоты, которая затем превращается КОМТ в ВМК. МАО локализуется на внешней мембране митохондрий. В запасающих пузырьках норадреналин защищен от метаболизма МАО. МАО и КОМТ метаболизируют допамин до гомованилиновой кислоты.

Статью подготовил и отредактировал: врач-хирург

gastroguru © 2017